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Introduction

A recurring theme in theoretical computer science has been the interplay between graph the-

ory, computational complexity theory and property testing via nonlocal games, otherwise known

as multiprover interactive proof systems. Nonlocal games consist of two separated (entangled in

the quantum setting) yet cooperating players, usually dubbed Alice and Bob, who receive ques-

tions from a verifier according to a known distribution and respond with answers via a previously

agreed upon strategy to try and win the verifiers game. These games can decide global decision

problems via local checks, which allows them to be used for highly efficient property testing. For

instance, graph properties like k-colorability or CSP satisfiability can be expressed through local

constraints over a graph. When the constraint graph has good expansion properties, the verifier can

test satisfiability with strong soundness bounds.

Graph theory plays a central role in the theory of NP-completeness. Many canonical NP-

complete problems such as 3-Colorability, Hamiltonian Cycle, Vertex Cover, Independent Set are

graph-theoretic. Graph based problems are particularly nice to use for hardness reductions due

to their flexibility, making them usefull for hardness-of-approximation reductions [1]. The PCP
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theorem [2, 3] shows that every NP language has a proof verifiable by a constant number of query

bits. The PCP theorem came on the footsteps of the MIP = NEXP [4] result. Historically, the

first proofs of the PCP theorem used nonlocal games and techniques such as gap-amplification

using parallel repetition [5]. MIPs where originally invented to provide zero-knowledge proofs

for NP in the information-theoretic setting [6]. A standard example is the zero-knowledge proof

for graph 3-coloring, where provers respond to local queries with a hidden coloring under random

permutations. The verifier checks for consistent and correct colorings without learning the coloring

itself.

In this thesis, we explore the quantum variant of this connection that has been developing re-

cently in the literature. That is the interplay between newly defined so called quantum graph prop-

erties, computability theory and entangled nonlocal games, known also as entangled multiprover

interactive proof systems.

Quantum variants of graph properties such as quantum chromatic number, quantum indepen-

dence number, quantum clique number, quantum graph homomorphism, and quantum isomor-

phism [7, 8, 9, 10, 11] are defined using nonlocal games. These are developed by first looking at

nonlocal games that function as property tests for these classical graph properties. These games

are used as local test of graph properties, where Alice and Bob usually receive either some ran-

dom vertex or edge of the graph and must respond in such a way to prove that the graph has

the requisite property, the game is a test of a property if it has a classical strategy that wins with

probability one if and only if the underlying graph has that property. Since each round of the

game only consists of sampling a couple of vertices/edges the tests are highly efficient. Then the

nonlocal games are relaxed to allow for quantum entangled strategies. The graph is then said to

hold the quantum variant of the graph property if the test is perfectly winnable with an entangled
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strategy. In many interesting cases this develops a distinct well-motivated relaxation of the classi-

cal graph property. A particularly elegant example of this phenomenon is quantum isomorphism.

Two non-isomorphic graphs may be quantum isomorphic, there is a striking combinatorial char-

acterization of quantum isomorphism that naturally emerges as a relaxation of the classical test

for graph isomorphism. In [9], the authors demonstrate that two graphs ⌧ and � are quantum

isomorphic if and only if the homomorphism counts from any planar graph into them are identi-

cal, i.e., 8planar  , |Hom( ,⌧) | = |Hom( ,�) |. This contrasts with the classical result, where

two graphs ⌧ and � are isomorphic if and only if the homomorphism counts from any graph (not

necessarily planar) into them are the same, i.e., 8 , |Hom( ,⌧) | = |Hom( ,�) |.

A well studied example of such a nonlocal graph property test is the graph homomorphism

game [7]. This game tests for the existence of a graph homomorphism from some graph ⌧ into

another graph �. Almost all other quantum graph properties in the literature, quantum chromatic,

independence, clique numbers, are defined using this game. In the game Alice and Bob each

recieve a random vertex 60, 61 from ⌧ and respond with verticies ⌘0, ⌘1 in �, ideally according

to a previously agreed upon homomorphism. The players then win the game if the following

conditions are satisified: if 60 = 61 then ⌘0 = ⌘1, if 60 and 61 are edge connected then so are ⌘0

and ⌘1, finally if 60 and 61 are neither identical or edge connected then similarly ⌘0 and ⌘1 should

also be neither.

In chapter 1 of this thesis we define a family of new quantum graph properties. We define

nonlocal games that test for perfect matching in graphs and hypergraphs, !-perfect matching for

bipartite graphs and finally fractional perfect matching. These are a set of novel games that dont

arise from the graph homomorphism game. We show that by looking at entangled strategies we

get the distinct quantum perfect matching property for graphs and hypergraphs. We then charac-

3



terize these quantum properties by quantizing a classical relationship in graph theory. A graph (or

hypergraph) ⌧ classically has a perfect matching if and only if its line graph ! (⌧) has a maximal

independence number. We show that a graph (hypergraph) has a quantum perfect matching if and

only if its line graph has maximal quantum independence number. In the case of the bipartite and

fractional perfect matching games we show that a new quantum property is not developed, the

games have perfect entangled strategies if and only if they have perfect classical startegies. But we

show that there can be interesting examples of quantum advantage for these games. If we look at

the further relaxation to nonsignaling strategies then all the games define distinct properties from

the classical and quantum ones. Nonsignaling strategies are a generalization of quantum strate-

gies where the only requirement is that Alice’s local marginal distribution is independent of Bob’s

questions, and vice-versa. We show that a graph has a nonsignaling perfect matching if and only

if the graph has a classical fractional perfect matching that avoids triangles. We also show that

a bipartite graph has a nonsiganling !-perfect matching if and only if the bipartite graph can be

decomposed into a classically matchable subgraph and a left-degree 2 subgraph.

Deciding if a nonlocal game is perfectly classically winnable is a problem that is complete for

the class #⇢-% of nondeterministic exponential time. Surprisingly, when looking at entangled

nonlocal games this same problem becomes undecidable[12, 13]. Furthermore, in a groundbreak-

ing result it was shown that even approximately deciding the entangled value of a nonlocal game,

when promised it is either 1 or at most 1

2
is '⇢-complete [14]. In chapter 2 of this thesis we look

at completely characterizing the hardness of deciding if an entangled nonlocal game is perfectly

winnable. We show that it is not only undecidable but is doubly undecidable. In particular, the

problem is complete for the computability class ⇧2 which lives in the second level of the arith-

metical hierarchy. This is the class of all problems for which no-instances are recognizable if a

4



Turing machine is equipped with an oracle for the halting problem. Equivalently, we show that the

problem of deciding the value of a noncommutative polynomial optimization is ⇧2-complete. This

is in stark contrast to commutative polynomial optimization which belongs to the class %(%�⇠⇢

[15].

Deciding the entangled value of nonlocal games is generally undecidable, but so is deciding

many of the quantum graph properties such as quantum isomorphism and calculating the quantum

chromatic, independence and clique numbers [16]. In Chapter 1 we also show that deciding quan-

tum perfect matching for hypergraphs is undecidable. Whether it is also undecidable for graphs

remains an interesting open problem.

To prove the ⇧2-completeness result, in chapter 2, we further develop a technique known as

iterated compression which was originally developed by Ji [17] and further used to prove undecid-

ability results for "�%⇤ [12, 14]. A compression procedure takes the description of a family of

nonlocal games and returns another family where the values of the games are related, that is the =th

game in the new family is perfectly quantum winnable if and only if the =th game in the original

was. Furthermore, the games in the new family are exponentially more efficient for the verifier

to play than the games in the original family, to sample questions and to decide if the players

won. Then compression can be used in an iterated way to produce reductions that take instances

of undecidable problems about Turing machines to games.

Compression is done in two steps. First the size of the questions involved in a game are expo-

nentially reduced and then later the size of the answers. To perform answer reduction the idea is

to delegate the verifiers decision, whether the players answers win the nonlocal game, to the play-

ers themselves. This is done via a quantum sound variant of essentially a cook-levin reduction.

To perform question reduction the idea is to delegate the task of sampling questions to the play-

5



ers themselves. This requires some unique properties of entangled strategies for nonlocal games

known as rigidity or self-testing. Many entangled nonlocal games, such as the magic square game

[18, 19], have essentially unique optimal quantum strategies. That is any strategy that wins per-

fectly or close to perfect must be using a quantum state and measurements that are close to one that

is locally unitarily equivalent to a particular canonical strategy. These type of rigidity properties

allow the verifier to put a leash on the players behavior and guarantee that the players perform par-

ticular measurements when playing optimally. In particular, for question reduction we use rigidity

to guarantee that the players are sampling questions according to the appropriate distribution.

In chapter 3, we study rigidity and self-testing for a family of new linear constarint system

games that generalize the classical CHSH game [20]. These games involve two inconsistent two-

variable linear equations over /=.

G0G1 = 1,

G0G1 = l=.

We are identifying Z= as a multiplicative group and l= as the primitive =th root of unity. Alice

receives a random equation and Bob a random variable. Alice must provide an assignment that

satisfies her equation and Bob must provide an assignment that is consistent with Alice. For = = 2

this game is exactly the classical CHSH game. We show that these games all exhibit quantum

advantage and that the, conjectured optimal, strategy for these games has quantum value which

approaches 1

2
+ 1

c
as =!1 and all the games have classical value 3

4
. We then go on to prove self-

testing results for = = 3 by developing a noncommutative sum-of-squares framework for proving

self-testing in cases where the optimal quantum value is bounded below 1 but there is a sum-
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of-squares proof of optimality. By deriving algebraic constraints on optimal strategies from the

sum-of-squares we identify algebraic groups for which we prove that all optimal strategies must be

state-dependent representations of said group. And then by studying the irreducible representations

of that group we can derive self-testing results for the canonical strategies entangled state and

measurements.

Throughout this thesis, in particular chapters 1 and 2, we have been looking at synchronous

games and synchronous strategies. Synchronous games are games where Alice and Bob must

respond with identical answers to win if they receive the same question. Synchronous strategies

are those strategies in which Alice and Bob respond identically on the same question. Synchronous

strategies can be modeled much easier than general strategies. In the classical case a synchronous

strategy consists of a single deterministic strategy used by both Alice and Bob. Synchronous

entangled strategies all use maximally entangled states and Alice and Bob share identical projective

measurements. These make synchronous strategies very convenient to work with and study. It turns

out that synchronous games have a perfect strategy if and only if they have prefect synchronous

strategies. Therefore when studying perfectly winnable synchronous games, such as the games

studied in chapters 1 and 2 and much of the nonlocal game and quantum graph theory literature, it

is enough to study synchronous strategies.

In chapter 4 of this thesis we study synchronous strategies of games in scenarios where they

are not well understood. In particular, synchronous strategies for non-synchronous games and

synchronous games that are not perfectly winnable. We study the synchronous strategies for the

2-coloring game of the :-clique, where 2 < : , and 2-coloring odd cycles. We provide an alter-

native SDP from [21] to compute the synchronous values for XOR games. And also look at the

synchronous value of the parallel repetition of games, with a stark example of a non-synchronous

7



game for which the synchronous value of its parallel repetition increases.
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Chapter 1: Games and Graphs

This chapter is taken verbatim from our paper “Quantum Perfect Matchings” [22]. All authors

of this work contributed equally.

1.1 Introduction

In this work, we investigate “quantum” notions of classical graph properties. To do this, we take

the perspective of two-prover property testing, also known as nonlocal games. In this setup, there is

a single verifier who wants to determine whether a particular object has a particular property. The

verifier is allowed to quiz two spatially separated provers, often dubbed Alice and Bob, and cross-

check their answers to verify whether the property holds. We say that a property test captures a

particular property if the classical provers can convince the verifier with certainty if and only if the

property holds. There is a vast literature on property testing [23]. In these tests, we can also allow

for the provers to use quantum entangled strategies [24, 25, 26, 27]. We can then say that the object

has a quantum analog of the property if and only if the verifier can be perfectly convinced by the

provers using a quantum entangled strategy. Previous works have established quantum analogs for

several graph properties, such as quantum chromatic numbers, quantum independence numbers,

and quantum graph homomorphisms and isomorphisms [7, 8, 9, 10, 11].

In some cases, such as 2-colorability of graphs, the quantum and classical properties coincide.

We refer to such tests as quantum sound, since quantum strategies cannot “fool” the classical test.
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However, in many interesting cases, the quantum property diverges from its classical counterpart,

leading to new and well-motivated definitions of quantum properties. A particularly elegant ex-

ample of this phenomenon is quantum isomorphism. While two non-isomorphic graphs may be

quantum isomorphic, there is a striking combinatorial characterization of quantum isomorphism

that naturally emerges as a relaxation of the classical test for graph isomorphism. In [9], the

authors demonstrate that two graphs ⌧ and � are quantum isomorphic if and only if the homo-

morphism counts from any planar graph into them are identical, i.e., 8planar  , |Hom( ,⌧) | =

|Hom( ,�) |. This contrasts with the classical result, where two graphs ⌧ and � are isomorphic

if and only if the homomorphism counts from any graph (not necessarily planar) into them are the

same, i.e., 8 , |Hom( ,⌧) | = |Hom( ,�) |. This combinatorial characterization is remarkable as

the definition of a quantum isomorphism prima facie is not combinatorial in nature: the existence

of a perfect quantum strategy is a highly continuous property in that it is defined through arbitrary

high dimensional Hilbert spaces with arbitrary operators.

In this paper, we continue down this line of work and introduce natural nonlocal games to

test for perfect matchings in graphs and hypergraphs, !-perfect matchings in bipartite graphs, and

fractional perfect matchings. We then examine both quantum entangled strategies and nonsignaling

strategies for these games. nonsignaling strategies generalize quantum strategies by imposing only

one condition: Alice’s local marginal distributions must remain independent of Bob’s question,

and vice-versa. Through these games, we define quantum and nonsignaling versions of perfect

matchings, !-perfect matchings, and fractional perfect matchings. Additionally, we provide com-

binatorial characterizations for when a graph satisfies the nonsignaling properties, and we connect

the quantum properties to other quantum graph properties, such as the quantum independence

number.

10



1.1.1 Our results

In section 1.3, we define four separate synchronous nonlocal games that test for !-perfect

matching for bipartite graphs, perfect matching for general graphs, fractional perfect matching and

finally perfect matching for hypergraphs. We prove that these games characterize the classical

graph properties. Namely, they have a perfect classical winning probability if and only if the

underlying graphs have the requisite perfect matching property. Almost all other quantum graph

properties in the literature are defined using the graph homomorphism game. Our tests represent a

novel class of games that don’t map onto the homomorphism games.

In section 1.4, we explore quantum and nonsignaling strategies for the !-perfect matching

game. We prove that the game is quantum sound, by using Hall’s theorem in graph theory and a

result about the quantum chromatic number of clique graphs. As a consequence we also get that

the fractional perfect matching test is quantum sound. We then go on to show that there are many

bipartite graphs that only have perfect nonsignaling strategies for the game. We provide a full

characterization for when a bipartite graph has this nonsignaling !-perfect matching property. In

particular we prove the following theorem

Theorem 1.1.1. Let ⌧ = (! t ', ⇢) be a bipartite graph. Then the following are equivalent:

1. l=B (⌫%"⌧) = 1,

2. ⌧# contains no lone vertices in !#,

3. there exists a perfect matching subgraph % ⇢ ⌧ and left-degree 2 subgraph ( such that

% t ( ⇢ ⌧ covering all of !.

11



Where ⌧# = (!# t '#
, ⇢

#) is the graph where the degree 1 vertices in ! and their neighbour in

' are iteratively removed until none remain.

Given that the !-perfect matching test is quantum sound a natural question, is whether there

is any quantum advantage for these games at all. In section 1.5, we explore the quantum values

of the game for the bipartite complete graphs  =,2. We fully characterize the quantum values by

providing sum-of-square proofs of optimallity. We show that only  3,2 has quantum advantage

and that the optimal value is achieved via a synchronous strategy. In particular any synchronous

strategy where the players three observables sum to 0 are optimal for this game and those are the

only ones. Interestingly for all = � 4 the optimally quantum and classical strategies for the games

are non-synchronous.

Finally, in section 1.6 we turn to the perfect matching of general graphs. We show that, unlike

fractional perfect matching and !-perfect matching, quantum strategies for the perfect matching

game define a distinct property. In particular,  = for odd = � 7 have the quantum perfect matching

property. We then provide a full characterization for the quantum perfect matching property. In

particular we prove the following theorem

Theorem 1.1.2. Let ⌧ be a graph. Then the following are equivalent:

1. ⌧ has a quantum perfect matching.

2. ! (⌧) has a projective packing of value |+ (⌧) |/2.

3. U@ (2! (⌧)) = |+ (⌧) |.

This result mirrors the classical characterization of perfect matching. Where a graph ⌧ has a

perfect matching if and only if U(! (⌧)) = |+ |/2.
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We then explore the nonsignaling perfect matching property. This further develops a distinct

property from the quantum one. In particular, the cycle graphs ⇠= for odd = � 5 have a nonsignal-

ing perfect matching but not quantum or classical ones. We then provide a full characterization for

the nonsignaling perfect matching property. In particular we prove the following theorem

Theorem 1.1.3. For a graph ⌧, l=B (%"⌧) = 1 if and only if ⌧ has a fractional perfect matching

avoiding triangles.

Finally, we show in the last part of the section that the quantum perfect matching property for

hypergraphs is undecidable and in fact equivalent to that of deciding the quantum independence

number of graphs.

1.1.2 Further directions

There are several further directions related to this work.

Decidability of quantum perfect matching games and line graph problems Deciding whether

a nonlocal game can be perfectly won with quantum strategies is generally undecidable [13, 14,

28]. Additionally, it has been established that determining the quantum chromatic number, inde-

pendence number, and quantum isomorphism are also undecidable [29, 9, 16]. In section 1.6.3,

we demonstrate that quantum perfect matching for hypergraphs is undecidable. A natural open

question is whether quantum perfect matching itself is undecidable. This turns out to be equivalent

to whether the quantum independence number remain undecidable when restricted to only line

graphs.

One could more broadly ask: what about other graph properties restricted to line graphs, such

as the chromatic number of line graphs? One natural approach is to use the classical reduction
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of Holyer which reduces 3SAT to edge coloring [30]. Here, one 3SAT clause is mapped to a

gadget graph where the edge coloring of the entire graph encodes the 3SAT clause assignment.

Unfortunately, due to this type of gadget construction, the reduction does not “quantize” easily. To

ensure that the reduction is quantum sound, i.e., if the 3SAT instance is not quantum satisfiable,

then the reduced edge coloring instance is not quantum satisfiable, one would need to be able to

simultaneously measure the entire gadget graph to recover an assignment to the 3SAT clauses.

This requires commutativity. [29] gets around this issue by introducing a commutativity gadget

which does not affect quantum satisfying solutions while enforcing that certain variables must

commute. However, the approach of [29] was very specific to graph (vertex) coloring and such a

commutativity gadget does not translate easily to edge problems. Hence, we ask whether one can

construct such commutativity gadgets for the edge coloring problem. Furthermore, more generally,

what kinds of constraint satisfaction problems admit commutativity gadgets?

Characterization of the existence of quantum strategies for the perfect matching game Mančin-

ska and Roberson show that two graphs are quantum isomorphic exactly when their homomor-

phism counts from any planar graphs are equal [9]. This is a completely combinatorial charac-

terization of the existence of a perfect quantum strategy for the graph isomorphism game. In our

work, we give a combinatorial characterization for the existence of a nonsignaling perfect strategy.

Does there exist such a characterization for the perfect matching games?

Additional characterization for nonsignaling perfect matching In Theorem 1.6.10, we show

that the nonsignaling value of the perfect matching game on graph ⌧ is 1 if and only if ⌧ has a

fractional perfect matching avoiding triangles. A fractional perfect matching of ⌧ is just a func-
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tion 5 : ⇢ (⌧) ! [0, 1] such that around any vertex, the sum of 5 is 1. There is a classic theorem

from graph theory that says that in fact we can restrict the codomain to just {0, 1/2, 1} which is

equivalent to the fact that the graph can be decomposed into odd cycles and single matchings [31].

The proof of this theorem follows by choosing a fractional perfect matching with the smallest sup-

port and showing that this is the candidate fractional perfect matching with weights in {0, 1/2, 1}.

To accomplish this, certain subgraphs in the support are barred by showing that if they existed,

then there is a transformation of the edge weights which would reduce the support even further.

Unfortunately, not all of these transformations preserve the sum of edge weights on triangles and

hence some adaptation is required for the case of fractional perfect matchings avoiding triangles.

Nonetheless, we believe a statement like this should be true. In particular,

Conjecture 1.1.4. ⌧ has a fractional perfect matching avoiding triangles if and only if ⌧ has a

fractional perfect matching avoiding triangles taking values in {0, 1/2, 1}.

Note that this would imply that the graph ⌧ also have a decomposition into odd cycles with

size � 5 and single matchings.

1.2 Preliminaries

1.2.1 Nonlocal games

Definition 1.2.1. A nonlocal game G is a tuple (X,A,+) consisting of a finite set X of inputs for

Alice and Bob, and a finite set A of outputs as well as a verification function+ : X⇥X⇥A⇥A !

{0, 1}.

A nonlocal game is played by a verifier and two provers, Alice and Bob. In the game, the

verifier samples a pair (G, H) uniformly at random and sends G to Alice and H to Bob. Alice and
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Bob respond with 0 and 1, respectively. They win if + (G, H, 0, 1) = 1. The players are not allowed

to communicate during the game, but they can agree on a strategy beforehand. Their goal is to

maximize their winning probability.

Definition 1.2.2. A nonlocal game is called synchronous if on simultaneously receiving the same

questions Alice and Bob must respond identically to win, i.e. + (G, G, 0, 1) = 0 if 0 < 1. Further-

more, we call a nonlocal game bisynchronous if it is synchronous and additionally on receiving

differing questions they may not respond with the same answer to win, i.e. + (G, H, 0, 0) = 0 if

G < H.

Definition 1.2.3. A classical strategy ( for a nonlocal game G = (X,A,+) is a tuple ( = ( 5�, 5⌫),

consisting of maps 5� : X ! A for Alice and 5⌫ : X ! A for Bob.

Definition 1.2.4. A quantum (tensor) strategy ( for a nonlocal game G = (X,A,+) is a tuple

( = (H�,H⌫, |ki, {�G0}, {⌫H1}), consisting of finite dimensional Hilbert spaces H� and H⌫, a

bipartite state |ki 2 H� ⌦H⌫, PVMs {�G0}02A acting on H� for each G 2 X for Alice and PVMs

{⌫H1}12A acting on H⌫ for each H 2 X for Bob. Often we will drop the Hilbert spaces, and just

write ( = ( |ki, {�G0}, {⌫H1}).

Here we restrict without loss of generality to pure states and projective measurements (PVMs).

For a strategy ( = ( |ki, {�G0}, {⌫H1}), the probability of Alice and Bob answering 0, 1 when

obtaining G, H is given by ?(0, 1 |G, H) = hk |�G0 ⌦ ⌫H1 |ki. Therefore, the winning probability of a

quantum strategy ( for the nonlocal game G is given by

l
⇤((,G) =

’
G,H

1

|X2 |
’
0,1

+ (G, H, 0, 1)?(0, 1 |G, H) =
’
G,H

1

|X2 |
’
0,1

+ (G, H, 0, 1)hk |�G0 ⌦ ⌫H1 |ki.
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For a nonlocal game G, we define the quantum value l⇤(G) = sup
(
l
⇤((,G) to be the supremum

over all quantum tensor strategies compatible with G. A game is said to exhibit pseudotelepathy if

it has a quantum perfect strategy but no classical perfect strategy.

The tensor-product structure is a way of mathematically representing the locality of the players

employing a quantum strategy in a nonlocal game. However, there is a more general way to model

this nonlocality mathematically.

Definition 1.2.5. A commuting operator strategy S for a nonlocal game G = (X,A,+) is a

tuple S = (H , |ki, {�G0}, {⌫H1}), consisting of a Hilbert space H , a state |ki 2 H , and two

collections of mutually commuting PVMs {�G0}02A acting on H for each G 2 X for Alice and

PVMs {⌫H1}12A acting on H for each H 2 X for Bob, i.e. [�G0, ⌫H1] = 0 for all 0, 1, G, H 2

A ⇥ A ⇥ X ⇥ X. Like for quantum strategies, we will often omit the Hilbert space and write

S = ( |ki, {�G0}, {⌫H1}) for a commuting operator strategy.

We can also define the commuting operator (also known as the quantum commuting) value

of a nonlocal game l@2 (G) = sup
(
l
@2 (S,G) to be the supremum over all commuting operator

strategies ( compatible with G. It is not hard to see that every quantum (tensor) strategy is a

commuting operator strategy. The converse holds if we restrict our commuting operator strategies

to be finite dimensional (i.e. H is finite dimensional). However, there are examples of nonlocal

games G for which there is a perfect (wins with probability 1) commuting operators strategy but

no perfect tensor-product strategy, see for example [13].

Definition 1.2.6. A nonsignaling strategy for a nonlocal game is any strategy where

’
0

?(0, 1, G, H) =
’
0

?(0, 1, G0, H) for every 1, H, G, G0
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and similarly,
’
1

?(0, 1, G, H) =
’
1

?(0, 1, G, H0) for every 0, G, H, H0.

The nonsignaling value of a nonlocal game l=B (G) = sup
(
l
=B (S,G) to be the supremum

over all nonsignaling strategies ( compatible with G. There are many games for which there is an

optimal nonsignaling strategy but no quantum one. An example is the CHSH game for which any

optimal quantum strategy wins with at most ⇠ .85 probability.

Definition 1.2.7. We say that a strategy is synchronous if ?(0, 1, G, H) = 0 whenever G = H and

0 < 1. Classical synchronous strategies are those for which Alice and Bob use the same map

5� = 5⌫ : X ! A. Quantum synchronous strategies involve Alice and Bob using an identical set

of measurements and a tracial state.

We define the synchronous values of a nonlocal game lC,B (G) = sup
(
l
C (S,G) to be the

supremum over all C-type synchronous strategies ( compatible with G, C here being any of classical,

quantum, commuting operator or nonsignaling. There are many games for which the synchronous

and non-synchronous values differ [32]. But for synchronous games we have the following result

Theorem 1.2.8 ([32]). If a synchronous game has a perfect strategy, then it also has a perfect syn-

chronous strategy. This is true in all of the classical, quantum, commuting operator and nonsignal-

ing settings.

1.2.2 Graph games

Definition 1.2.9. Given graphs ⌧ = (+⌧ , ⇢⌧) and � = (+� , ⇢�), the homomorphism game

�><(⌧,�) is the synchronous game with question set +⌧ and answer set +� . The players win

if when they receive vertices in ⌧ they respond with vertices in � that preserve the adjacency
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relations between the players. I.e. on questions 6�, 6⌫ they respond with ⌘�, ⌘⌫ such that 6� ⇠ 6⌫

if and only if ⌘� ⇠ ⌘⌫.

Definition 1.2.10. The quantum chromatic number j@ (⌧) of a graph ⌧ is the smallest 2 such that

�><(⌧, 2) has a perfect quantum strategy.

The quantum chromatic number is sandwiched between the classical clique and chromatic

numbers l(⌧)  j@ (⌧)  j(⌧). [10]

Definition 1.2.11. The quantum independence number U@ (⌧) of a graph ⌧ is the largest 2 such

that �><( 2, ⌧̄) has a perfect quantum strategy, where ⌧̄ is the graph complement of ⌧.

Definition 1.2.12. The quantum clique number l@ (⌧) of a graph ⌧ is the largest 2 such that

�><( 2,⌧) has a perfect quantum strategy.

Definition 1.2.13. Given graphs⌧ = (+⌧ , ⇢⌧) and� = (+� , ⇢�), the isomorphism game �B>(⌧,�)

is the synchronous game with question set +⌧ [ +� and answer set +⌧ [ +� . The players must

respond with a vertex in the opposite graph from that which they received a vertex. After which

they will have 6�, 6⌫ 2 ⌧ and ⌘�, ⌘⌫ 2 �. The players win if vertices in G (which may have been

question or answer vertices for either) have the same adjacency relationship to those in �.

1.2.3 Graph theory

Definition 1.2.14. Given a (hyper)graph ⌧ = (+ , ⇢), a matching " ⇢ ⇢ is a set of pairwise

non-adjacent edges. A perfect matching is a matching which covers all vertices in ⌧.

Definition 1.2.15. Given a bipartite graph ⌧ = (! t ', ⇢), an !-perfect matching " ⇢ ⇢ is a

matching which covers all vertices in !.
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The following definition is a linear relaxation of the definition of a perfect matching.

Definition 1.2.16. A graph ⌧ = (+ , ⇢) has a fractional perfect matching if there exists a function

5 : ⇢ ! [0, 1] such that for each vertex E 2 + ,
Õ

(D,E)2⇢ 5
�
(D, E)

�
= 1.

Theorem 1.2.17 ([31]). Given a graph with a fractional perfect matching, there is one where

5 : ⇢ ! {0, 1

2
, 1}.

Given a graph ⌧ = (+ , ⇢), denote #⌧ (() ⇢ + the set of vertices adjacent to the subset ( ⇢ + .

Theorem 1.2.18 (Hall’s marriage theorem). Let ⌧ = (! t ', ⇢) be a bipartite graph. ⌧ has a

!-perfect matching if and only if every subset ( ⇢ ! satisfies

|( |  |#⌧ (() |.

Theorem 1.2.19 ([33]). A graph ⌧ = (+ , ⇢) has a perfect matching if and only if for every subset

( ⇢ + , the subgraph ⌧ [+ \ (] has at most |* | odd connected components.

Theorem 1.2.20 ([33]). A graph ⌧ = (+ , ⇢) has a fractional perfect matching if and only if there

is a collection of edges that form a disjoint covering of the vertices made up of matchings and odd

cycles.

Lastly, we define the notion of a line graph of a graph.

Definition 1.2.21. Given a graph ⌧ = (+ , ⇢), the line graph of ⌧ denoted by ! (⌧) is the graph

with vertices ⇢ and edges (4, 5 ) 2 ⇢ ⇥ ⇢ such that 4 \ 5 < ;.

Proposition 1.2.22. A graph ⌧ = (+ , ⇢) has a perfect matching if and only if the independence

number of its line graph is U(! (⌧)) = |+ |/2.
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1.3 Nonlocal games from perfect matchings

In this section, we give nonlocal games corresponding to graph matching properties. These

games are the main objects of study in this paper.

1.3.1 The bipartite perfect matching game

Definition 1.3.1. Given a bipartite graph ⌧ = (! t ', ⇢), the bipartite !-perfect matching game

⌫%"⌧ is a synchronous game with question set ! and answer set ⇢ . The players win if and only

if the question-answer pairs (E1, E2) 2 ! ⇥ ! and 41, 42 2 ⇢ ⇥ ⇢ satisfy

1. (adjacency) E1 2 41 and E2 2 42; and

2. (consistency and edge disjointedness) either 41 = 42 or 41 \ 42 = ;.

The second condition says that if both players are given the same vertex then they have to

give the same matching; and if they are given different vertices then they need to give different

matchings. We can more eloquently write this condition as

41 \ 42 < ; =) 41 = 42.

We now show that these are indeed the natural games to define for the bipartite perfect matching

property.

Theorem 1.3.2. Given a bipartite graph ⌧ = (! t ', ⇢), the game ⌫%"⌧ has a perfect classical

strategy if and only if ⌧ has an !-perfect matching.

Proof. Let ⌧ be a bipartite graph with an !-perfect matching " . On questions (E1, E2), Alice and
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Bob will respond with 41 3 E1 and 42 3 E2, according to the matching " . Clearly, if E1 = E2 then

41 = 42. Now, since " is a perfect matching if E1 < E2 then 41 \ 42 = ;.

Now suppose the game ⌫%"⌧ has a perfect classical strategy. Since ⌫%"⌧ is a synchronous

game, by Theorem 1.2.8 it must also have a perfect synchronous strategy where Alice and Bob

both respond according to the same function 5 : ! ! ⇢ . Since 5 is a perfect strategy and the

defining conditions of ⌫%"⌧ are exactly those which define an !-perfect matching, " = 5 (+) is

an !-perfect matching. É

1.3.2 The perfect matching game

We now give the natural extension of the bipartite perfect matching game to perfect matchings

on an entire graph.

Definition 1.3.3. Given a graph ⌧ = (+ , ⇢), the perfect matching game %"⌧ is a synchronous

game with question set + and answer set ⇢ . The players win if and only if the question-answer

pairs (E1, E2) 2 + ⇥+ and 41, 42 2 ⇢ ⇥ ⇢ satisfy

1. (adjacency) E1 2 41 and E2 2 42; and

2. (consistency and edge disjointedness) 41 \ 42 < ; =) 41 = 42.

Theorem 1.3.4. Given a graph ⌧ = (+ , ⇢) the game %"⌧ has a perfect classical strategy if and

only if ⌧ has a perfect matching.

Proof. The proof is identical to that of Theorem 1.3.2 except where " is a perfect matching not

an !-perfect matching. É
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1.3.3 The fractional perfect matching game

In the graph theory literature, there is a notion of having a fractional perfect matching. This is

a relaxation of the usual notion of perfect matching where now the selected edges have a weight

and the condition is that for all vertices, the weights of the edges incident to the vertex sum to 1.

We shall also define a nonlocal game which represents this property.

Given ⌧ = (+ , ⇢), the bipartite double cover of ⌧ is ⌧ ⇥  2. We shall give a subset of the

bipartite perfect matching games a different name. The motivation for this will be justified in the

following theorems.

Definition 1.3.5. Given a graph ⌧ = (+ , ⇢), the fractional perfect matching game �%"⌧ is the

synchronous game ⌫%"⌧⇥ 2
.

This definition is natural as we have the following lemma from graph theory.

Lemma 1.3.6. ⌧ has a fractional perfect matching if and only if ⌧ ⇥ 2 has a !-perfect matching.

Proof. Suppose ⌧ has a fractional perfect matching. In particular then the graph has a covering

made of disjoint odd cycles and matchings. To recover a !-perfect matching lift this cover onto

the ⌧ ⇥  2. Where the cycles are given some orientation and in the bipartite graph a vertex on the

left is matched with a vertex on the right only if there was an outgoing edge in the original graph.

Then this gives a matching since every left vertex is covered and its clearly disjoint.

Now suppose ⌧ ⇥  2 has a !-perfect matching. Then we can recover a a collection of disjoint

odd cycles and matching on the original graph by mapping the edges in the !-perfect matching

back onto ⌧. Therefore, since there is a covering of ⌧ by disjoint odd cycles and matching, ⌧ has

a perfect fractional matching. É
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Corollary 1.3.7. �%"⌧ has a perfect classical strategy if and only if ⌧ has a fractional perfect

matching.

Proof. By definition, �%"⌧ has a perfect classical strategy if and only if ⌫%"⌧⇥ 2
has a perfect

classical strategy. Then by Theorem 1.3.2 and Lemma 1.3.6, ⌫%"⌧⇥ 2
has a perfect classical

strategy if and only if ⌧ ⇥  2 has a perfect matching if and only if ⌧ has a fractional perfect

matching. É

We give another perspective on the fractional perfect matching games as a relaxation of %"⌧ .

The consistency condition for the perfect matching game from before can be equivalently given by

the following set of conditions: If 41 = (E1,F1) and 42 = (E2,F2), then

1. if E1 = E2 then F1 = F2,

2. if E1 < E2 then F1 < F2, and

3. E1 = F2 if and only if E2 = F1.

Without the final “symmetry” condition this alternatively defines the fractional perfect matching

game.

1.3.4 The hypergraph perfect matching game

Continuing down this line of definitions, we can define the analogous perfect matching game

for hypergraphs.

Definition 1.3.8. Given a hypergraph ⌧ = (+ , ⇢), the perfect matching game %"⌧ is a syn-

chronous game with question set + and answer set ⇢ . Here ⇢ represents a set of hyperedges. The

players win if and only if the question-answer pairs (E1, E2) 2 + ⇥+ and 41, 42 2 ⇢ ⇥ ⇢ satisfy
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1. (adjacency) E1 2 41 and E2 2 42; and

2. (consistency and edge disjointedness) 41 \ 42 < ; =) 41 = 42.

Again, we can show that classical perfect strategies for this game exactly correspond to hyper-

graph perfect matchings.

Theorem 1.3.9. Given a hypergraph ⌧ = (+ , ⇢) the game %"⌧ has a perfect classical strategy if

and only if ⌧ has a perfect matching.

Proof. The proof is identical to that of Theorem 1.3.4. É

1.4 Quantum and nonsignaling bipartite perfect matching

1.4.1 Quantum bipartite perfect matchings

Let  =,: be the complete bipartite graph. Then ⌫" =,:
is the same as the :-coloring game

for the complete graph on = vertices  =. Therefore, for : < = we have l⇤(⌫" =,:
) < 1 since

the quantum chromatic number of  = is j@ ( =) = = [10]. It turns out that no bipartite graph has

quantum pseudo-telepathy for the bipartite perfect matching game precisely because of this fact.

Theorem 1.4.1. For any bipartite graph ⌧ = (! t ', ⇢), we have l⇤(⌫%"⌧) = 1 if and only if

l(⌫%"⌧) = 1.

Proof. It suffices to prove that if l⇤ [⌫%"⌧] = 1 then l[⌫%"⌧] = 1. We do this by proving the

converse. Suppose l(⌫%"⌧) < 1 then from Theorem 1.3.2 ⌧ has no !-perfect matching. Hence,

by ?? 1.2.18, there is some set ( ⇢ ! such that |#⌧ (() | < |( |. Let = = |( | and : = |#⌧ (() |.
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Considering the subgraph ⌧ [(] induced by the subset (, we immediately see that

l
⇤(⌫%"

⌧ [(])  l⇤(⌫%" =,:
) < 1

where the last inequality follows from the fact that ⌫%" =,:
is equal to the :-coloring game for

 =. Finally, since l⇤(⌫%"
⌧ [(]) < 1 then l⇤(⌫%"⌧) < 1 since any perfect strategy for ⌫%"⌧

could just be restricted to ⌫%"
⌧ [(] . É

Since the fractional perfect matching game is just a subset of the bipartite perfect matching

games, there is no pseudo-telepathy for all fractional perfect matching games as well.

Corollary 1.4.2. For any graph ⌧, we have l⇤(�%"⌧) = 1 if and only if l(�%"⌧) = 1.

Even though quantum fractional and bipartite perfect matchings do not define new properties,

we will see in section 1.5 these games can have quantum advantage.

1.4.2 Nonsignaling bipartite perfect matchings

Let ⌧ = (! t ', ⇢) be a bipartite graph. Then let ⌧# = (!# t '#
, ⇢

#) be the graph where we

iteratively removed the degree 1 vertices in ! and their neighbours in ' until none remain. This

process is well defined up to isomorphism. In this section we show that a bipartite graph ⌧ has

nonsignaling !-perfect matching if and only if ⌧# contains no lone vertices in !#.

In particular, the complete bipartite graphs  =,: with : � 2 satisfy the above property. There-

fore, letting = > : , we get an infinite family of graphs with nonsignaling !-perfect matching but

no classical !-perfect matching.

Intuitively, this process just pairs off “forced matchings” and removes them from the graph.
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Once all of the “forced matchings” are removed, if there are any vertices in ⌧# which cannot be

paired (i.e., they are isolated) then there can be no possible strategy.

Theorem 1.4.3. Let ⌧ = (! t ', ⇢) be a bipartite graph. Then the following are equivalent:

1. l=B (⌫%"⌧) = 1,

2. ⌧# contains no lone vertices in !#,

3. there exists a perfect matching subgraph % ⇢ ⌧ and left-degree 2 subgraph ( such that

% t ( ⇢ ⌧ covering all of !.

Proof. We shall first show that a left-degree 2 graph ⌧ always has a nonsignaling perfect strategy.

We shall explicitly define the nonsignaling correlation ?. Take the correlation to be supported on

41 2 ⇢ (E1) and 42 2 ⇢ (E2), and set

?(41, 42 |E1, E2) =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

1

2
, if E1 = E2 and 41 = 42

1

2
, if E1 < E2, # (E1) \ # (E2) < ;, and 41 \ 42 = ;, # (E1) \ # (E2) ⇢ 41 [ 42

1

4
, if E1 < E2 and # (E1) \ # (E2) = ;

0, otherwise.

We see that this defines a probability distribution. For E1 = E2,

’
41,422⇢

?(41, 42 |E1, E1) =
’

42⇢ (E1)

1

2
=

1

2
|⇢ (E1) | = 1.

For E1 < E2, let # (E1) = {F1,F2} and # (E2) = {D1, D2}. If, without loss of generality, F1 = D1
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and F2 < D2 then

’
41,422⇢

?(41, 42 |E1, E2) = ?((E1,F1), (E2, D2) |E1, E2) + ?((E1,F2), (E2, D1) |E1, E2) = 1.

If # (E1) = # (E2), then

’
41,422⇢

?(41, 42 |E1, E2) = ?((E1,F1), (E2,F2) |E1, E2) + ?((E1,F2), (E2,F1) |E1, E2) = 1.

Finally, if E1 < E2 and # (E1 \ # (E2) = ;, then

’
41,422⇢

?(41, 42 |E1, E2) =
’

412⇢ (E1),422⇢ (E2)
?(41, 42 |E1, E2) =

1

4
|⇢ (E1) | |⇢ (E2) | = 1.

It is easy to see that this probability distribution satisfies perfectly all of the rules of the bipartite

perfect matching game. Hence, we just need to check that it satisfies the nonsignaling condition.

Indeed, for any E1, E2 2 ! and 42 2 ⇢ (E2) (or else ? is just 0 and the nonsignaling condition

trivially holds), we have
’
41

?(41, 42 |E1, E2) =
1

2

in all cases. This shows that if one can find a perfect matching subgraph % and left-degree 2

subgraph ( such that % and ( partition !, then we have a nonsignaling perfect strategy for ⌧ and

establishes (3) implies (1).

Now, suppose that ⌧# contains a lone vertex in !#. A degree 1 vertex can only pick its unique

edge in a perfect strategy, which also removes its neighboring right vertex from any other left

vertices strategy. Therefore, the graph with the degree 1 left vertex and its neighbor removed has
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a perfect nonsignaling matching if and only if the original graph did. Then, it is clear that there is

no nonsignaling strategy for ⌧ since the lone vertex can not be matched in ⌧# and ⌧ has a perfect

nonsignaling matching if and only if ⌧ does. This establishes (1) implies (2).

Finally, we show that (2) implies (3). However, if !# contains no lone vertices and the process

has terminated then it must mean that⌧# has left-degree � 2. Let % be the removed degree 1 edges

and ( = ⌧# and we obtain the desired condition for (3). É

From the above we also get that a graph ⌧ = (+ , ⇢) has nonsignaling perfect fractional match-

ing if (⌧ ⇥  2)# has no lone vertices on the left.

1.5 Quantum bipartite matching  =,2

In section 1.4, we showed that the bipartite matching game does not produce a separate quan-

tum bipartite perfect matching property, this is fundamentally becausel⇤(⌫%" =,:
) < 1 for : < =.

However, this does not imply that quantum strategies do not exhibit advantage for the bipartite

matching game. To study this we will look at the  =,2 graphs and completely characterize their

quantum and classical values. This is, in some sense, the most simple class of bipartite graphs one

could consider which could have quantum advantage.

We first begin with deriving an expression for the winning probability in terms of quantum

operators. We know that for a general strategy ?,
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l(⌫%" =,2
, ?) = 1

=
2

’
E1,E22[=]

’
412⇢ (E1),422⇢ (E2)

?(41, 42 |E1, E2)+⌫%" 
=,2
(41, 42, E1, E2)

=
1

=
2

’
E2[=]

’
42⇢ (E)

?(4, 4, |E, E) + 1

=
2

’
E1<E22[=]

’
412⇢ (E1),422⇢ (E2):

41\42=;

?(41, 42 |E1, E2)

=
1

=
2

’
E2[E]

’
02[2]

?((E, 0), (E, 0) |E, E) + 1

=
2

’
E1<E22[=]

’
01<022[2]

?((E1, 01), (E2, 02) |E1, E2).

Note that once the question, which is a left vertex, is fixed, a right vertex completely determines

the edge. Hence, for a quantum strategy, we have operators {�E0} and {⌫D1} with state d such that

l(⌫%" =,2
, ?) = 1

=
2
TR[

’
E2[E]

’
02[2]

�E0⌫E0 +
’

E1<E22[=]

’
01<022[2]

�E101
⌫E202

]d.

Noting that

2l(⌫%" =,2
, ?) � 1 =

1

=
2
Tr

©≠
´
©≠
´
’
E2[E]

[
’
02[2]

�E0⌫E0 �
’

01<022[2]
�E01

⌫E02
]

+
’

E1<E22[=]
[

’
01<022[2]

�E101
⌫E202

�
’
02[2]

�E10
⌫E20

]™Æ
¨
d

™Æ
¨
.

Defining �E := �E1 � �E2 and ⌫E := ⌫E1 � ⌫E2, we see that

l(⌫%" =,2
, ?) = 1

2=2
TR[

’
E2[=]

�E⌫E �
’

E1<E22[=]
�E1

⌫E2
]d + 1

2

=
1

2=2
TR[=2

� �
’
E12[=]

�E1
[
’
E22[=]

(�1)XE1=E2⌫E2
]]d

Lets start by looking at quantum synchronous strategies, we have that the winning probability
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is described by a single set of observables {�E}. Thus,

l(⌫%" =,2
, ?) = 1

2=2
TR

’
E2[=]

�
2

E
�

’
E1<E22[=]

�E1
�E2

+ 1

2

=
1

2=2
TR=� �

’
E1<E22[=]

�E1
�E2

+ 1

2

=
1

2=2
TR2=� �

’
E1,E22[=]

�E1
�E2

+ 1

2

=
1

2
+ 1

=

� 1

2=2
TR[

’
E

�E]2
.

This shows that whenever we have observables such that
Õ
E
�E = 0, then we have a quantum

synchronous strategy achieving value 1

2
+ 1

=
. Hence we’ve shown the following lowerbound.

Lemma 1.5.1. l⇤(⌫%" =,2
) � 1

2
+ 1

=
for all = � 2.

Additionally, we have that

1

2
+ 1

=

� [ 1

2=2

’
E2[=]

�
2

E
�

’
E1<E22[=]

�E1
�E2

+ 1

2
] = 1

2=2
[
’
E

�E]2

at the algebra level. This sum-of-squares decomposition proves 1

2
+ 1

=
is optimal for quantum

synchronous strategies and therefore l⇤,B (⌫%" =,2
) = 1

2
+ 1

=
.

Now we will upperbound the general quantum value of the  =,2 games.

Lemma 1.5.2. We have the following upperbounds

1. l⇤(⌫%" 3,2
)  5

6
.

2. l⇤(⌫%" =,2
)  1 � 1

=
for = � 4.
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Proof. Consider the Frobenius norm with respect to some state d. We have that

1

2=2

�����=2 �
’
E1

�E1

 ’
E2

(�1)XE1=E2⌫E2

!�����
d

 1

2
+ 1

2=2

�����
’
E1

�E1

 ’
E2

(�1)XE1=E2⌫E2

!�����
d

 1

2
+ 1

2=2

’
E1

k�E1
kd

�����
 ’
E2

(�1)XE1=E2⌫E2

!�����
d

 1

2
+ 1

2=2

’
E1

�����
 ’
E2

(�1)XE1=E2⌫E2

!�����
d

=
1

2
+ 1

2=2

p
=

vuut’
E1

�����
 ’
E2

(�1)XE1=E2⌫E2

!�����
2

d

.

Focusing on the last factor in the last term,

’
E1

k [
’
E2

(�1)XE1=E2⌫E2
]k2
d
=

’
E1

’
E2,E

0
2

(�1)XE1=E2+XE1=E02 TR⌫E2
, ⌫E

0
2
d

= =2 +
’
E1

’
E2<E02

(�1)XE1=E2+XE1=E02 TR⌫E2
, ⌫E

0
2
d

= =2 +
’
E2<E02

 ’
E1

(�1)XE1=E2+XE1=E02
!

TR⌫E2
, ⌫E

0
2
d

= =2 +
’
E2<E02

(= � 4)TR⌫E2
, ⌫E

0
2
d

= =2 � (= � 4)= + (= � 4)
�����
’
E2

⌫E2

�����
2

d

.
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Then, the above becomes

1

2=2

�����=2 �
’
E1

�E1

 ’
E2

(�1)XE1=E2⌫E2

!�����
d

=
1

2
+ 1

2=2

p
=

vuut
=

2 � (= � 4)= + (= � 4)
�����
’
E2

⌫E2

�����
2

=
1

2
+ 1

2=2

p
=

vuut
4= + (= � 4)

�����
’
E2

⌫E2

�����
2

For = = 3, (= � 4) = �1, the above quantity is upperbounded by

1

2
+ 1

2=2

p
=

p
4= =

5

6
.

For = � 4, we need to upperbound
��Õ

E2 ⌫E2

��2 by =2. This gives us

1

2
+
p
=

2 � 4= + 4

2=
=

1

2
+ |= � 2|

2=

which is 1 � 1

=
for = � 4. É

The synchronous quantum strategy saturates the 5

6
bound for  3,2.

For ⌫%" =,2
for = � 4 we show that we have classical strategies which saturate the quantum

upperbound.

Lemma 1.5.3. l(⌫%" =,2
) � 1 � 1

=
for all = � 4.

Proof. Consider the “trivial” classical strategy where Alice always outputs the first right vertex

and Bob always outputs the second right vertex. We note that this strategy only fails when Alice

and Bob receive the same vertex. This constitutes = of the =2 vertex pairs that the players could be

asked which establishes the result. É
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We now finally give a classical upperbound for ⌫%" ( 3,2) which completes the study of the

quantum and classical values for  =,2 bipartite perfect matching games.

Lemma 1.5.4. l(⌫%" 3,2
) = 7

9
.

Proof. The optimal classical value can be achieved via a deterministic strategy. Let 08, 1 9 2 {±1}

be the expected value for the deterministic strategy with +1 be the weighting for the first right

vertex and �1 be the weighting for the second right vertex.

Without loss of generality, 01 = 02. Then,

1

18
[9 � 01 [�11 + 12 + 13] � 02 [11 � 12 + 13] � 03 [11 + 12 � 13]] =

1

18
[9 � 20113 � 03 [11 + 12 � 13]]

 14

18
=

7

9
.

We see that this is optimal as setting 01 = 02 = �1, 03 = 1, 11 = 12 = �1, and 13 = 1 yields the

value 7

9
. É

This shows that we only have quantum advantage for = = 3 for the graph  3,2, which is also the

only case where the optimal quantum value is achieved by playing synchronously. We summarize

all the bounds in the theorem below.

Theorem 1.5.5. For the ⌫%" =,2
games, we have the following:

1. l(⌫%" 3,2
) = 7

9
<

5

6
= l⇤(⌫%" 3,2

),

2. l(⌫%" =,2
) = l⇤(⌫%" =,2

) = 1 � 1

=
for all = � 4,

3. l⇤,B (⌫%" =,2
) = 1

2
+ 1

=
for all = � 2.
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Additionally, we have a sum-of-squares decomposition for ⌫%" 3,2
which gives an alternative

proof of l⇤(⌫%" 3,2
) = 5

6
.

6��(�1(⌫1 � ⌫2 � ⌫3) + �2(�⌫1 + ⌫2 � ⌫3) + �3(�⌫1 � ⌫2 + ⌫3))

=
1

2
[�1 � �3 � ⌫1 + ⌫3]2 + 1

2
[�1 � �2 � ⌫1 + ⌫2]2

+ 1

4
[�1 + �2 + �3 + ⌫1 + ⌫2 + ⌫3]2 + 1

12
[�1 + �2 + �3 � ⌫1 � ⌫2 � ⌫3]2

Furthermore, any optimal strategy for this game must satisfy the identities
Õ
8
�8 =

Õ
8
⌫8 = 0.

This can be derived from the sum-of-square proof of optimality by adding the last two terms to get

(�1 + �2 + �3 + ⌫1 + ⌫2 + ⌫3) + (�1 + �2 + �3 � ⌫1 � ⌫2 � ⌫3) = 2

’
8

�8 = 0

and similarly,

(�1 + �2 + �3 + ⌫1 + ⌫2 + ⌫3) � (�1 + �2 + �3 � ⌫1 � ⌫2 � ⌫3) = 2

’
8

⌫8 = 0.

1.6 Perfect matching

In this section, we take the same approach to define the notions of quantum and nonsignaling

perfect matching for general graphs.

1.6.1 Quantum perfect matching

Unlike the bipartite and fractional games, the perfect matching game exhibits quantum pseudo-

telepathy for many graphs. Therefore quantum perfect matching defines a distinct property to
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perfect matching.

First we give a simple characterization of quantum strategies for the perfect matching game.

Lemma 1.6.1. Given a graph ⌧ = (+ , ⇢) any perfect synchronous quantum strategy for %"⌧

given by projectors ⇧H

G
for G, H 2 + will have the following properties:

1. ⇧(G,H) := ⇧H

G
= ⇧G

H
for every G, H 2 + .

2. ⇧4 = 0 if 4 8 ⇢ .

3.
Õ
42⇢ (G) ⇧4 = � for every G 2 + .

4. ⇧4⇧⌘ = X4=⌘⇧4 for every 4, ⌘ 2 ⇢ where 4 \ ⌘ < ;.

Proof. Rule games imply (1,2,4), (3) because its a strategy. É

We will see that a graph ⌧ having a quantum perfect matching is equivalent to its line graph

! (⌧) having a projective packing of value |+ (⌧) |/2, which is equivalent to 2! (⌧) (the disjoint

union of two copies of ! (⌧)) having quantum independence number |+ (⌧) |. First we must define

projective packing number and quantum independence number.

Definition 1.6.2 ([34, 35]). A 3-dimensional projective packing of a graph ⌧ is an assignment

G ! ⇧G 2 C3⇥3 of projections to the vertices of + (⌧) such that G ⇠ H implies that ⇧G⇧H = 0. The

value of such a projective packing is

1

3

’
G2+ (⌧)

rk(⇧G) =
1

3

’
G2+ (⌧)

Tr(⇧G) =
1

3

Tr
©≠
´

’
G2+ (⌧)

⇧G
™Æ
¨
.

Additionally, the projective packing number of a graph ⌧, denoted U? (⌧) is the supremum of the

values of projective packings of ⌧.
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The quantum independence number of a graph ⌧ is defined as the maximum : such that there

is a perfect quantum strategy for the :-independent set game on ⌧. However, this is equivalent to

the following definition which will be of more direct use for us.

Definition 1.6.3 ([7, 35]). Let ⌧ be a graph. The quantum independence number of ⌧, denoted

U@ (⌧), is the maximum : 2 N such that there exists finite dimensional projections ⇧8,G for all

8 2 [:] and G 2 + (⌧) satisfying the following:

1.
Õ
G2+ (⌧) ⇧8,G = � for all 8 2 [:].

2. ⇧8,G⇧ 9 ,H = 0 if 8 < 9 and G = H or G ⇠ H.

Note that the first condition implies that ⇧8,G⇧8,H = 0 if G < H.

It is known that if projections ⇧8,G for 8 2 [:] and G 2 + (⌧) give a quantum :-independent

set of ⌧, then the projections ⇧G :=
Õ
82[:] ⇧8,G are a projective packing of ⌧ of value : and thus

⌧ always has a projective packing of value equal to its quantum independence number and thus

U@ (⌧)  U? (⌧).

We now show that a quantum perfect matching of ⌧ is equivalent to a projective packing of

! (⌧) of value |+ (⌧) |/2. We remark that this is the maximum possible value of a projective

packing of ! (⌧).

Theorem 1.6.4. Let ⌧ be a graph. Then the following are equivalent:

1. ⌧ has a quantum perfect matching.

2. ! (⌧) has a projective packing of value |+ (⌧) |/2.

3. U@ (2! (⌧)) = |+ (⌧) |.
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Proof. We will show that (1) , (2) ( (2) , (3) follows from the above discussion). We first

prove that if ⌧ has a quantum perfect matching, then ! (⌧) has a projective packing of value

|+ (⌧) |/2. Since ⌧ has a quantum perfect matching, by Lemma 1.6.1 there is an assignment

4 ! ⇧4 2 C3⇥3 (for some 3) of projections to the edges of ⌧ such that ⇧4⇧ 5 = 0 if 4 and 5 are

incident and
Õ
42⇢ (-) ⇧4 = � for all G 2 + (⌧). Since incidence of edges is adjacency in the line

graph, we have that this is in fact a projective packing of ! (⌧). To compute its value, note that

2
1

3

Tr
©≠
´

’
42⇢ (⌧)

⇧4
™Æ
¨
=

1

3

Tr
©≠
´

’
G2+ (⌧)

’
42⇢ (G)

⇧4
™Æ
¨
=

1

3

Tr( |+ (⌧) |�) = |+ (⌧) |.

Therefore the projective packing of ! (⌧) has value |+ (⌧) |/2.

Now suppose that ! (⌧) has a projective packing 4 ! ⇧4 2 C3⇥3 of value |+ (⌧) |/2. Note that

these projections satisfy the orthogonality requirements of Lemma 1.6.1 and thus to prove that ⌧

has a quantum perfect matching it is only left to show that
Õ
42⇢ (G) ⇧4 = � for all G 2 + (⌧). For

any G 2 + (⌧), we have that ⇧4⇧ 5 = 0 for any two distinct 4, 5 2 ⇢ (G). Therefore,
Õ
42⇢ (G) is a

projection and thus

Tr
©≠
´

’
42⇢ (G)

™Æ
¨
 Tr(�) = 3,

with equality if and only if the sum is equal to the identity. Therefore,

1

3

Tr
©≠
´

’
42+ (! (⌧))

⇧4
™Æ
¨
=

1

23
Tr

©≠
´

’
G2+ (⌧)

’
42⇢ (G)

⇧4
™Æ
¨
 |+ (⌧) |/2,

with equality if and only if
Õ
42⇢ (G) ⇧4 = � for all G 2 + (⌧). But we do have equality by assump-

tion, and therefore we have proven that ⌧ has a quantum perfect matching. We remark that the

above also shows that |+ (⌧) |/2 is always an upper bound on the value of a projective packing of
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! (⌧), and so ⌧ has a quantum perfect matching precisely when this maximum possible value is

attainable. É

Lemma 1.6.5.  5 has no quantum pseudotelepathy.

Proof. We shall show that there cannot be projectors satisfying the above properties for  5. We

begin by showing that if all the above properties are satisfied then all of the projectors must be

orthogonal. Indeed, consider edges (G, H) and (I,F) which do not share a vertex. Then, there is a

unique vertex 0 < G, H, I,F and so

⇧(G,H) = ⇧(G,H) [
’
8<0

⇧(8,0)] = ⇧(G,H) [⇧(I,0) + ⇧(F,0)] .

Therefore,

⇧(G,H)⇧(I,F) = ⇧(G,H) [⇧(I,0) + ⇧(F,0)]⇧(I,F) = 0.

Now, for any edge (G, H),

� = [
’
0<H

⇧(0,H)] [
’
1<G

⇧(G,1)] = ⇧2

(G,H) = ⇧(G,H)

which is impossible. É

Lemma 1.6.6. l⇤(%" 7
) = 1.

Proof. A projective packing of ! ( 7) is provided by the 7-context Kochen-Specker sets in Section

2 of [36]. É

Theorem 1.6.7. l⇤(%" =
) = 1 if and only if = < 1, 3, 5.
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Proof. Since  5 does not have a quantum perfect matching, neither does  3.  = has a quantum

perfect matching for odd = � 7 as it can be broken into  7 and an even number of additional

verticies that can be classically matched. É

1.6.2 Nonsignaling perfect matching

The cycle graphs ⇠= for odd = � 5 are an infinite family of graphs with nonsignaling perfect

matching and no quantum or classical perfect matching.

Theorem 1.6.8. For odd = � 5, l=B (%"⇠=
) = 1.

Proof. The following defines a simple perfect nonsignaling strategy ?. Here! and represent

the two edges at any vertex of the cycle graph where some orientation of the edges is fixed.

1. ?(!,!, G, G) = ?( , , G, G) = 1

2
for every vertex G.

2. ?(!, , G, H) = ?( ,!, G, H) = 1

2
for any two adjacent vertices G ⇠ H.

3. ?(!,!, G, H) = ?( , , G, H) = ?(!, , G, H) = ?( ,!, G, H) = 1

4
for any two discon-

nected vertices G ⌧ H.

É

Definition 1.6.9. Given graph ⌧, we say that a fractional perfect matching 5 : ⇢ (⌧) ! R avoids

triangles if
Õ
42C 5 (4)  1 for all triangles C in ⌧.

Theorem 1.6.10. For a graph ⌧, l=B (%"⌧) = 1 if and only if ⌧ has a fractional perfect matching

avoiding triangles.
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Proof. In this proof, it will be convenient to consider vertices instead of edges for the answers

where responding to the question G with vertex 0 specifies the edge (0, G).

Suppose l=B (%"⌧) = 1 and let ? be a bisynchronous nonsignaling correlation witnessing

this. We will show that 5 (0, G) := ?(0 |G), the marginal of ? defines a fractional perfect matching

avoiding triangles. Firstly, since ? is nonsignaling, for any 0, G 2 + (⌧) and any H 2 + (⌧),

?(0 |G) =
’

12# (H)
?(0, 1 |G, H).

Substituting H = G, we have

?(0 |G) =
’

12# (G)
?(0, 1 |G, G) = ?(0, 0 |G, G)

and substituting H = 0, we have

?(0 |G) =
’

12# (0)
?(0, 1 |G, 0) = ?(0, G |G, 0).

This shows that

?(0 |G) = ?(0, 0 |G, G) = ?(0, G |G, 0) = ?(G, G |0, 0) = ?(G |0).

Now, fix G 2 + (⌧), then

’
(0,G)2⇢ (G)

5 (0, G) =
’

(0,G)2⇢ (G)
?(0 |G) =

’
(0,G)2⇢ (G)

?(0, 0 |G, G) = 1.
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Hence, 5 is a fractional perfect matching. Now, fix a triangle {E, D,F} ⇢ + (⌧). Then,

1 =
’

02# (E),12# (D)
?(0, 1 |E, D)

� ?(D, E |E, D) +
’

02# (E)
?(0,F |E, D) +

’
12# (D)

?(F, 1 |E, D)

= ?(D |E) + ?(F |D) + ?(F |E)

= 5 (D, E) + 5 (F, D) + 5 (F, E),

where we used the fact that marginals are well-defined from the nonsignaling condition from line

2 to 3. Hence, 5 is bounded by 1 on triangles. This completes the forward direction.

Now, for the backwards direction note that the existence of a fractional perfect matching can be

formulated as feasibility of a linear program with only integer coefficients. Moreover, the triangle-

avoiding condition can also be encoded as linear constraints with integer coefficients. Therefore,

if ⌧ has a fractional perfect matching that avoids triangles, then it has one that is rational-valued.

Let 5 : ⇢ (⌧) ! Q be a rational-valued fractional perfect matching of ⌧. It follows that there is

some value A 2 N such that ⌘(4) := A 5 (4) 2 Z�0 for all 4 2 ⇢ (⌧). Note that this means that

Õ
H2# (G) ⌘(GH) = A for all G 2 + (⌧), and that

Õ
42C ⌘(4)  A for all triangles C in ⌧. We will show

how to use 5 to construct a perfect nonsignaling correlation ? for the perfect matching game for ⌧

whose marginals ?(H |G) are equal to 5 (GH) for all GH 2 ⇢ (⌧).

First, define

?(H, H0|G, G) =

8>>>>>><
>>>>>>:

5 (GH) if H = H0 and GH 2 ⇢ (⌧)

0 otherwise

Now let G, G0 2 + (⌧) with G < G
0. If GG0 2 ⇢ (⌧), let : = ⌘(GG0), and otherwise set : = 0.
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Note that for any H 2 # (G) \ # (G0), we have that ⌘(GH) + ⌘(G0H)  A � : . Define a bipartite

graph � with parts � = {(H, 8, 0) : H 2 # (G) \ {G0}, 8 = 1, . . . , ⌘(GH)} and ⌫ = {(H, 8, 1) : H 2

# (G0)\{G}, 8 = 1, . . . , ⌘(G0H)}, where (H, 8, 0) ⇠ (H0, 9 , 1) if H < H0. Note that |�| = |⌫ | = A�: . We

will show that � has a perfect matching via Hall’s theorem. Consider a subset ( ✓ �, and define

) = {H 2 # (G)\{G0} : 9 8 2 [⌘(GH)] s.t. (H, 8, 0) 2 (}. Note that if |) | > 1, then # (() = ⌫ and thus

Hall’s condition holds for (. Of course |) | = 0 if and only if ( = ú, so we may assume that |) | = 1

and thus there is some bH 2 # (G) \ {G0} such that ( ✓ {(bH, 8, 0) : 8 2 [⌘(GbH)]}. Thus |( |  ⌘(GbH).
Moreover, every vertex of ( has the same neighborhood, which is ⌫ \ {(bH, 9 , 1) : 9 2 [⌘(G0bH]}.
Therefore,

|# (() | = |⌫ | � ⌘(G0bH) = A � : � ⌘(G0bH).

Recalling that ⌘(GbH) + ⌘(G0bH)  A � : , we see that

|( |  ⌘(GbH)  A � : � ⌘(G0bH) = |# (() |.

Thus Hall’s condition holds for arbitrary ( ✓ � and therefore � has a perfect matching.

Now let " be a perfect matching of �. For each H 2 # (G) \ {G0} and H
0 2 # (G0) \ {G},

define 6(H, H0) to be the number of edges in " of the form (H, 8, 0) (H0, 9 , 1) for 8 2 [⌘(GH)] and

9 2 [⌘(G0H0)]. Then define

?(H, H0|G, G0) =

8>>>>>>>>>><
>>>>>>>>>>:

5 (GG0) if H = G0, H0 = G, & GG
0 2 ⇢ (⌧)

6(H, H0)/A if H 2 # (G) \ {G0} & H
0 2 # (G0) \ {G}

0 otherwise.
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It is now straightforward to check that ? is a valid correlation that wins the perfect matching game

for ⌧ with probability 1, and that the marginals ?(H |G) are well-defined and equal to 5 (GH) if

GH 2 ⇢ (⌧) and equal to 0 otherwise. É

1.6.3 Undecidability of quantum perfect matching for hypergraphs

As we saw in section 1.3.4, the perfect matching game can be also played on hypergraphs.

Unlike with graphs for which it remains open whether quantum perfect matching is decidable, for

hypergraphs we get undecidability.

Theorem 1.6.11. It is undecidable to decide if a hypergraph has a quantum perfect matching.

Proof. From Theorem 1.6.4, we get that deciding quantum perfect matching for a hypergraph �

is equivalent to deciding U@ (2! (�)). A classical result in graph theory tell us that the set of line

graphs of hypergraphs is equivalent to that of general graphs [37]. That is given a graph ⌧ there

exists a hypergraph � such that ! (�) = ⌧. Therefore, deciding quantum perfect matching for

hypergraphs is equivalent to deciding if a graph has a quantum independence number of |+ | which

is undecidable [16]. É
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Chapter 2: Games and Undecidability

This chapter is taken verbatim from our paper “Nonlocal Games, Compression Theorems, and

the Arithmetical Hierarchy” [28]. All authors of this work contributed equally.

2.1 Introduction

A nonlocal game describes a scenario in which a (classical) verifier plays a game with two

separated, but possibly entangled, players (who we’ll call Alice and Bob). In the game, the verifier

samples a pair of questions (G, H) from a question distribution `, sends G to Alice and H to Bob, and

then receives answers 0 and 1 from the players. The verifier then computes a decision procedure

⇡ (G, H, 0, 1) to determine whether the players win or lose. We assume that Alice and Bob know

the question distribution and decision procedure before the game starts, and cooperatively select

an entangled strategy to maximize their probability of winning.

Recent results have shown that the optimal winning probability, called the value, of a nonlocal

game is uncomputable in general. Surprisingly, the study of the complexity of nonlocal games

is also intimately tied to questions outside of complexity theory. For example, Slofstra’s result

about the undecidability of whether a nonlocal game has a perfect quantum strategy (i.e. a strategy

that wins with probability 1) was a byproduct of his showing that the set of quantum correlations

is not closed [13, 38]. As another example, the complexity-theoretic result MIP⇤ = RE [14]

(which implies that there is no algorithm to even approximate the quantum value of a nonlocal
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game) yields negative answers to both Tsirelson’s Problem from quantum information theory and

Connes’ Embedding Problem from operator algebras [39, 40].

These uncomputability results for nonlocal games demonstrate that the space of quantum strate-

gies is terribly complex — no algorithm can optimize over them, even approximately! This is

already quite striking, but a closer look at these results indicates that more can be said: differ-

ent computational problems for nonlocal games can be uncomputable in incomparable ways. To

explain this we need to define two relevant models of entangled strategies.

Strategies for nonlocal games. The most general model we consider is the class of commuting

operator strategies. Let ⌧ = (X,A, `,⇡) denote a nonlocal game with question alphabet X,

answer alphabet A, question distribution `, and decision procedure ⇡ : X⇥X⇥A ⇥A ! {0, 1}.

A commuting operator strategy ✓ for a game ⌧ is specified by the following data: a separable

Hilbert space H , a unit vector |ki 2 H (called the state), and sets of measurements � = {�G}G2X

and ⌫ = {⌫H}H2X acting on H satisfying the following:

• For all G, H, the measurements �G = {�G
0
}02A and ⌫H = {⌫H

1
}12A are sets of bounded positive

operators on H , with each set summing to the identity, and

• For all G, H, 0, 1, the operators �G
0

and ⌫H
1

commute.

Given questions (G, H), the probability that the players respond with answers (0, 1) is given by

hk |�G
0
⌫
H

1
|ki. The two conditions on the measurement operators above ensure that this is a valid

probability distribution over A ⇥A, and furthermore the commutation condition ensures that the

strategy is non-signaling, meaning that the marginal probability that a player responds with an

answer only depends on their question (and not the other player’s question).
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The value of a commuting operator strategy ✓ = ( |ki, �, ⌫) in a game ⌧ is given by

l(⌧,✓) :=
’
G,H,0,1

`(G, H) · hk |�G
0
⌫
H

1
|ki · ⇡ (G, H, 0, 1) .

The commuting operator value of a game ⌧ is defined as

l2> (⌧) := sup

commuting operator✓
l(⌧,✓).

Intuitively, the commuting operator value of a game represents the players’ maximum success

probability allowed under quantum mechanics.

An important subclass of commuting operator strategies are the finite-dimensional ones, i.e.

where the underlying Hilbert space H is equal to C3 for some integer 3. We define the quantum

value1 of a game ⌧ to be

l@ (⌧) := sup

finite-dimensional✓
l(⌧,✓).

In the finite-dimensional setting, commuting operator strategies coincide with strategies in the

tensor product model: one can find two finite-dimensional Hilbert spaces H�,H⌫, a bipartite state

|eki 2 H� ⌦H⌫, and measurements {e�G
0
} on H� and {e⌫H

1
} on H⌫ such that

hk |�G
0
⌫
H

1
|ki = hek |e�G

0
⌦ e⌫H

1
|eki .

For a proof, see [41, Theorem 1]. Tensor product strategies give a natural way to model the

behavior of spatially separated players, and this is perhaps the most commonly studied model
1The reason for this name, as opposed to “finite-dimensional value”, is historical: the study of nonlocal games has

largely focused on the setting of finite-dimensional strategies.
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of strategies for nonlocal games. General commuting operator strategies, on the other hand, do

not assume that there is an a priori tensor product decomposition of the Hilbert space, but only

that the non-signaling property is enforced via commutativity of the players’ measurements. The

commuting operator model of quantum correlations arise naturally in algebraic formulations of

quantum field theory [41, 42].

It is easy to see that l@ (⌧)  l2> (⌧). Tsirelson’s Problem is essentially a question about

whether l@ (⌧) = l2> (⌧) for all games ⌧; in other words, can all commuting operator strate-

gies (which might be infinite dimensional) be approximated arbitrarily well by finite-dimensional

ones [41]? Furthermore, it was shown that Tsirelson’s Problem is equivalent to Connes’ Embed-

ding Problem, which was a long-standing question in operator algebras about the approximability

of von Neumann algebras by finite-dimensional matrix algebras [39, 43, 42, 40]. As previously

mentioned, these questions about finite-dimensional approximability of infinite-dimensional ob-

jects are intimately connected to questions about computability of the value of nonlocal games.

Computability of nonlocal games. We now define computational problems associated with

computing the value of nonlocal games. Fix 0  Y < 1 and a value type C 2 {@, 2>}. Define

two sets of nonlocal games

!
H4B

C
:= {⌧ : lC (⌧) = 1} and !

=>

C,Y
:= {⌧ : lC (⌧) < 1 � Y} .

These two sets are disjoint, and when Y = 0, the union of these two sets is all nonlocal games.

These two sets give rise to a decision problem: given a nonlocal game ⌧ in the union !H4B
C
[ !=>

C,Y
,

decide whether ⌧ is a “yes” instance or a “no” instance.
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When Y = 0, this decision problem corresponds to exactly computing either the quantum or

commuting operator value. When Y > 0, this problem corresponds to approximating the value,

because being able to compute lC (⌧) up to additive ± Y

2
error allows one to decide whether ⌧ 2

!
H4B

C
or ⌧ 2 !=>

C,Y
. Thus we call deciding between !H4B

C
and !=>

C,0
the exact C-value problem, and

deciding between !H4B
C

and !=>
C,Y

for Y > 0 the approximate C-value problem (we usually think of Y

as 1/2, but the specific value is immaterial, as long as it is strictly positive).

We summarize the results known so far about the computability of nonlocal games:

1. In [13], Slofstra showed that the exact 2>-value problem is hard for the class coRE, which

is the complement of RE, the set of recursively enumerable languages. In other words,

there exists a computable reduction from Turing machines " to nonlocal games ⌧ such that

l2> (⌧) = 1 if and only if " does not halt.

Furthermore, the exact 2>-value problem is contained in coRE due to the existence of a

semidefinite programming hierarchy that converges from above to the commuting operator

value of a given nonlocal game [44, 45]. Thus the exact 2>-value problem is complete for

coRE.

2. In [38], Slofstra showed that the exact @-value problem is also hard for coRE. However, no

upper bound on the complexity of the exact @-value problem was given.

3. In [14], Ji, Natarajan, Vidick, Wright and Yuen showed that the approximate @-value problem

is hard for RE. In other words, there exists a computable reduction from Turing machines

" to nonlocal games ⌧ such that if " halts then l@ (⌧) = 1, otherwise l@ (⌧)  1

2
.

Furthermore, the approximate @-value problem is contained in RE due to the fact that a

brute-force enumeration algorithm can find a finite-dimensional strategy that succeeds with
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probability arbitrarily close to 1, provided that l@ (⌧) = 1. Thus, the approximate @-value

problem is complete for RE.

While these results show that the exact @-value, exact 2>-value, and approximate @-value problems

are all undecidable, they are undecidable in different ways. For example, a basic result in com-

putability theory is that the classes RE and coRE are incomparable (i.e. they do not contain each

other). Thus the approximate @-value problem cannot be reduced to the exact 2>-value problem

and vice versa.2 Similarly, because both RE and coRE can be reduced to it, the exact @-value

problem must be strictly harder than both the approximate @-value and exact 2>-value problem (in

the sense that a Turing machine equipped with the ability to compute the exact 2>-value of a game

provably cannot solve the exact @-value problem).

We note that (a) since the complexities of the @-value and 2>-value problems are different,

but (b) a positive answer to Tsirelson’s Problem implies that they are the same, it must be that

Tsirelson’s Problem (and thus Connes’ Embedding Problem) has a negative answer.

These results still leave two main open questions about the complexity of nonlocal games:

1. What is the complexity of the exact @-value problem (i.e. deciding whether l@ (⌧)
?= 1).

2. What is the complexity of the approximate 2>-value problem (i.e. deciding whetherl2> (⌧) =

1 or l2> (⌧) < 1

2
)?

In this paper we resolve the first open question by characterizing the complexity of the exact

@-value problem:

Theorem 2.1. The problem of deciding whether l@ (⌧) = 1 for nonlocal games ⌧ is complete for

⇧2.
2The notion of reduction that we consider here are many-one reductions, i.e., yes instances are mapped to yes

instances, and no instances are mapped to no instances.
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The class ⇧2 is in the second level of the arithmetical hierarchy, which is an infinite hi-

erarchy of complexity classes3 –1
:=0

⌃: and
–1
:=0

⇧: that characterize the complexity of lan-

guages according to arithmetical formulas that define them. The class ⌃: consists of all lan-

guages reducible to deciding whether a given ⌃: -sentence is true. A ⌃: -sentence ( is of the form

9G1 8G2 9 · · · q(G1, . . . , G: ) for some computable predicate q. Similarly, the class ⇧: consists of

all languages reducible to deciding a given ⇧: -sentence is true; these are sentences of the form

8G1 9G2 8 · · · q(G1, . . . , G: ). 4

At the zeroth (: = 0) level, the classes ⌃0 = ⇧0 correspond to the set of decidable languages,

and the first level classes ⌃1 and ⇧1 are simply the well-known classes RE and coRE, respectively.

The class ⇧2 is in the second level of the arithmetical hierarchy, and contains both ⌃1 and ⇧1. It

is a well-known fact from computability theory that the levels of the arithmetical hierarchy are all

distinct, and furthermore ⌃: < ⇧: for all : � 1.

Although we do not resolve the second open question, it is conjectured that the approximate

2>-value problem is complete for coRE = ⇧1. A positive resolution of this conjecture would

complete the picture of the computability landscape of nonlocal games, depicted in Figure 2.1,

and give a pleasing correspondence between different nonlocal game problems and classes in the

arithmetical hierarchy.
3In computability theory these classes are usually denoted as ⌃0

:
and ⇧0

:
. For simplicity we have dropped the

superscripts.
4Although we never use it in this paper, for the benefit of the reader, we recall the equivalent definitions of these

classes using Turing machines. In this equivalent definition, ⌃1 (resp. ⇧1) is the class of all languages ! for which
there exists a Turing machine � such that �(G) = 1 if and only if G 2 ! (resp. G 8 !). The class ⌃2 (resp. ⇧2) is the
class of all languages ! for which there exists a Turing machine � with oracle access to the halting problem such that
�(G) = 1 if and only if G 2 ! (resp. G 8 !). The :th level classes, for : > 2, can be defined similarly. From this
definition, it is clear at once that ⇧: is the set of languages ! whose complement ! is in ⌃: , and vice versa.
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Y = 0 Y > 0

l@ (⌧) ± Y ⇧2 (this paper) ⌃1 [14]

l2> (⌧) ± Y ⇧1 [13] ⇧1 (conjectured)

Figure 2.1: A characterization of the complexity of computing the value of a nonlocal game in terms of the
arithmetical hierarchy, depending on whether the quantum or commuting operator value is being considered,
and whether the value is being computed exactly or approximately. The top left entry is the main result of
this paper, and the lower right entry is conjectured.

We mention that the approximate and exact @- and 2>-value problems are used in defining the

four complexity classes MIP⇤, MIP⇤
0
, MIP2> and MIP2>

0
, respectively. In particular, the above figure

corresponds to the results MIP⇤ = RE = ⌃1, MIP⇤
0
= ⇧2 and MIP2> ✓ MIP2>

0
= coRE = ⇧1.

A priori, this tight correspondence between nonlocal games and the arithmetical hierarchy

seems quite surprising. On one hand, computing the value of a nonlocal game corresponds to

a continuous optimization problem over a space of quantum states and quantum measurements,

possibly in infinite dimensions. On the other hand, deciding whether a quantified sentence is true

is a discrete problem in symbolic logic ostensibly having nothing to do with quantum physics.

Furthermore, the reader may notice that there are several interesting asymmetries in Figure 2.1,

illustrating that this correspondence has rich and unexpected behavior: if we assume the conjecture

about the approximate 2>-value problem, then both exact and approximate computation of the

commuting operator value are equivalent to deciding ⇧1-sentences, whereas for the quantum value,

the complexity splits depending on whether we are considering exact or approximate computation.
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Connections with noncommutative polynomial optimization. We also point out that the afore-

mentioned complexity results can be viewed as characterizations of the complexity of noncom-

mutative polynomial optimization, an important subject in mathematics, physics and computer

science [44, 45, 46, 47]. The general formulation of noncommutative polynomial optimization

(ncPO for short) is the following: given polynomials ?, @1, . . . , @< in =-noncommutative variables

(G1, . . . , G=) over R, compute the value of the following optimization program:

sup hq |?(-) |qi

s.t. @8 (-) ⌫ 0 for 8 = 1, . . . ,<

The supremum is taken over all choices of tuples (H , - , q) where H is a Hilbert space, - is an

=-tuple of bounded Hermitian operators acting on H , and |qi is a unit vector on H . The notation

?(-) and @8 (-) indicates that we evaluate each of the indeterminates G8 with the operator -8.

We consider two different variations of an ncPO program %; if we restrict the supremum to vary

only over finite – but unbounded – dimensional Hilbert spaces then we call the program finite-

dimensional and let lfin(%) denote the value of the program. Otherwise we call the program

infinite-dimensional and let l1(%) denote the value.

The complexity results in Figure 2.1 can be recast as the following. Given an ncPO program %

and a real number 2 2 ', deciding whether

1. lfin(%) � 2 is complete for ⇧2.

2. l1(%) � 2 is complete for ⇧1.

3. lfin(%) � 2 or lfin(%) < 2 � Y for fixed Y > 0 is complete for ⌃1.

53



The reason for this is because on one hand we can encode the C-value of a nonlocal game for

C 2 {@, 2>} as an ncPO program that is finite-dimensional if C = @ and infinite-dimensional if

C = 2>; on the other hand the complexity of solving an ncPO program is upper-bounded by ⇧2, ⇧1,

or ⌃1 depending on the variant of the problem. Although this connection is fairly straightforward,

for completeness we provide the details in Section 2.8.

We note that, by comparison, the analogous problems for commutative polynomial optimization

over R are decidable; this is because deciding whether a semialgebraic set defined by polynomial

equalities/inequalities over R is empty is contained in PSPACE [15].

The main conceptual result of our paper is that all of the complexity statements about nonlocal

games expressed in Figure 2.1 can be established in a unified manner via a technique called non-

local game compression. At the heart of the proof of MIP⇤ = RE is a gap-preserving compression

theorem for the @-value of games. The centerpiece of the present paper is a gapless compression

theorem that holds for both the @- and 2>-value of games. First we show that this gapless com-

pression theorem directly gives an alternate proof of the ⇧1-completeness of the exact 2>-value

problem [13], as well as an alternate proof of Slofstra’s result that the set of quantum correlations

is not closed (i.e. there is a nonlocal game ⌧ with l@ (⌧) = 1, but there is no finite-dimensional

strategy with success probability 1) [38].

We then combine our gapless compression theorem with the gap-preserving one of [14] to

obtain the ⇧2-hardness of the exact @-value problem, establishing Theorem 2.1. Finally, we also

show how a gap-preserving compression theorem for the 2>-value of games would imply that the

approximate 2>-value problem is complete for coRE = ⇧1.

Another goal of this paper is to give a self-contained proof of a compression theorem that (a)
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illustrates the key ideas of the gap-preserving compression results of [48, 14], (b) generalizes these

ideas to the infinite-dimensional commuting operator setting, and (c) is presented in a language that

is more accessible to researchers coming from operator algebras and related areas of mathematics.

The proofs of the gap-preserving compression theorems of [48, 14] are quite involved and rely

on sophisticated results ranging from self-testing [49, 50] to the quantum soundness of the low-

degree test [51, 26] to gap amplification methods [52]. These components are needed for the

gap-preserving aspect of their compression theorem. Working in the “gapless regime” allows us to

work with much simpler versions of these components (or circumventing them entirely).

In Section 2.1.1 we give an overview of how compression of nonlocal games yields the com-

plexity characterization shown in Figure 2.1. In Section 2.1.2 we give an overview of how our

gapless compression theorem is proved. In Section 2.1.3 we explain the synchronous strategies

framework, which our results are expressed in. This framework gives an elegant way to work with

both @- and 2>-type strategies in a unified manner, and brings out the connection between nonlocal

games and operator algebras.

2.1.1 The compression paradigm

Intuitively speaking, a nonlocal game compression procedure for C-type strategies (where C 2

{@, 2>}) is a computable map Compress that takes an infinite sequence⌃ = (⌧=)=2N of polynomial-

complexity nonlocal games to another infinite sequence ⌃0 = (⌧0
=
)=2N such that for every = 2 N,

• The optimal success probability of C-strategies in ⌧0
=

is related in a predictable way to the

optimal success probability of C-strategies in ⌧=, and

• The complexity of the game ⌧0
=

is much smaller than that of the original game ⌧=, where we
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measure the complexity of a game based on the number of time steps required by the verifier

to compute the decision procedure.

This second item is what motivates the name “compression”.

The “polynomial-complexity” condition on the input sequence ⌃ = (⌧=)=2N of games means

that the complexity of each game ⌧= is bounded by $ (=2) for some constant 2 > 0, and the

compression procedure Compress will depend on this constant. Furthermore, ⌃ and ⌃0 are

specified via Turing machines which play the role of the verifier for the games in the sequences.

Thus the map Compress is a map from Turing machines to Turing machines. Importantly, the

map Compress itself is also computable by a Turing machine.

Depending on which value type C 2 {@, 2>} we consider, how the optimal C-strategies of ⌧0
=

and ⌧= are related to each other, and how much smaller the complexity of ⌧0
=

is than of ⌧=, we

obtain different compression procedures. The different compression procedures, in turn, allow us

to establish the different entries of the correspondence outlined in Figure 2.1.

We now give a high-level sketch of this connection.

Gapped compression for @-type strategies. The MIP⇤ = RE result of [14] relies on the follow-

ing gap-preserving (or gapped for short) compression procedure for @-type strategies (i.e. finite-

dimensional strategies).

Theorem 2.2 (Gap-preserving compression, informally stated [14]). There exists a computable

map GappedCompress
@

that, given a sequence of games ⌃ = (⌧=)=2N, outputs a sequence of

games ⌃0 = (⌧0
=
)=2N such that the complexity of ⌃0 is $ (log =), and furthermore if the complexity

of ⌃ is at most poly(=), then for all = 2 N,

• If l@ (⌧=) = 1, then l@ (⌧0=) = 1.
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• E(⌧0
=
,

1

2
) � max

n
E(⌧=,

1

2
) , 2

=

o
.

Here, for a nonlocal game ⌧ and real number 0  ?  1, the quantity E(⌧, ?) is defined to be

the minimum dimension of a strategy ✓ such that l(⌧,✓) � ?. If there is no finite-dimensional

strategy that achieves winning probability ?, then E(⌧, ?) is defined to be1.

The reason GappedCompress
@

is called “gap-preserving” is because if l@ (⌧=) = 1, then

l@ (⌧0=) = 1, and otherwise if l@ (⌧=) < 1

2
, then l@ (⌧0=)  1

2
. In other words, the gap between 1

versus 1/2 in the two different possibilities for l@ (⌧=) is preserved for l@ (⌧0=). The second “if”

follows from the second item of Theorem 2.2: if there are no finite-dimensional strategies for ⌧=

that succeed with probability at least 1

2
, then E(⌧=,

1

2
) = 1, and therefore E(⌧0

=
,

1

2
) = 1, which

implies that there is no finite-dimensional strategy for ⌧0
=

that has value at least 1

2
.

To show that every arithmetical sentence ( of the form 9G q(G) can be transformed into an

equivalent game⌧( (which is essentially equivalent to the statement MIP⇤ = RE), the compression

procedure of Theorem 2.2 is used to construct an infinite sequence of games ⌃ = (⌧=)=2N that

depends on the sentence (. If q(G) is true for some G  = (meaning that ( is true), then the game

⌧= has the property that l@ (⌧=) = 1; otherwise ⌧= is designed to be equivalent to the game

⌧
0
=+1

, the compression of ⌧=+1 through the gap-preserving transformation GappedCompress
@
.

In other words, the sequence of games ⌃ is effectively a self-compressing sequence of games. By

inductively utilizing the guarantees of the gapped compression procedure, we get that in the case

that ( is true, we have l@ (⌧=) = 1 for all =, and if ( is false, l@ (⌧=)  1

2
for all =.5 Finally, the

game ⌧( is then chosen to be the first member ⌧1 of the sequence ⌃.

Where does the poly(=)-complexity assumption on ⌃ and the $ (log =)-complexity of ⌃0 con-
5The choice of 1

2
is inconsequential here; everything stated here holds true for any constant that’s strictly less than

1.
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sequence of Theorem 2.2 come in? We can imagine that the behavior of the verifier in the game

⌧= is specified by the following pseudocode:

1 The verifier checks whether q(G) is true for some G  =. If it is, then accept.

2 Otherwise, compute ⌃0 by running GappedCompress
@

on the description of the

sequence ⌃.

3 Play the game ⌧0
=+1

, the (= + 1)-st game of the sequence ⌃0.

Pseudocode 1: The game ⌧= encoding ⌃1-sentences.

For simplicity we assume that q(=) is computable in time $ (=). Then the complexity of the

game ⌧= can be computed as $ (=2) + $ (1) + $ (log =) = poly(=). The $ (=2) comes from evalu-

ating q on = different inputs; the $ (1) comes from the complexity of executing the compression

procedure; and the $ (log =) comes from the complexity of the compressed game ⌧0
=+1

. So the

sequence of games ⌃ has complexity poly(=), and thus the consequences of the assumption (the

first and second items) are satisfied.

Gapless compression for @- and 2>-type strategies. We now turn to gapless compression pro-

cedures. As suggested by the name, these are compression procedures that do not necessarily

preserve any gap in the values of the “input” sequence of games. The main technical contribution

of this paper is the following gapless compression theorem:

Theorem 2.3 (Gapless compression, informally stated). For C 2 {@, 2>} there exists a computable

map GaplessCompress
C

that, given a sequence of games ⌃ = (⌧=)=2N, outputs a sequence of

games ⌃0 = (⌧0
=
)=2N such that the complexity of ⌃0 is $ (log =), and furthermore if the complexity

of ⌃ is at most poly(=), then for all = 2 N,
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• If lC (⌧=) < 1, then lC (⌧0=) < 1.

• lC (⌧0=) � 1 � U(1 � lC (⌧=)), where 0 < U < 1 is a universal constant.

• E(⌧0
=
, 1) � max

n
E(⌧=, 1) , 2

2=

o
.

Notice that the first and second items imply that lC (⌧=) = 1 if and only if lC (⌧0=) = 1. In the

case of C = @, this gapless compression theorem appears to be a weaker version of Theorem 2.2,

except the second item makes it incomparable: whereas the gapped compression theorem only

works on games that either have value 1 or at most 1

2
, the gapless compression theorem works for

all games. In fact, the compression procedure of Theorem 2.3 is gap-shrinking: given a game ⌧=

with value lC (⌧=) < 1, the compressed game ⌧0
=

has value lC (⌧=) < lC (⌧0=) < 1. Intuitively, by

repeatedly applying a gapless compress procedure to an initial game with value strictly less than

1, the sequence of compressed games obtained have value that get arbitrarily close to 1.

Gapless compression theorems allow us to show that deciding the truth of sentences ( of the

form 8G q(G) (i.e. ⇧1-sentences) can be reduced to deciding whether the quantum (or commuting

operator) value of nonlocal games is exactly 1. Analogously to the proof sketched for MIP⇤ =

RE, we construct a self-compressing sequence of games ⌃ = (⌧=)=2N that depends on the given

sentence ( = 8G q(G). In pseudocode, the games have the following behavior:

1 The verifier checks whether q(G) is false for some G  =. If it is, then reject.

2 Otherwise, compute ⌃0 by running GaplessCompress
C

on the description of ⌃.

3 Play the game ⌧0
=+1

, the (= + 1)-st game of the sequence ⌃0.

Pseudocode 2: The game ⌧= encoding ⇧1-sentences.

Again we assume that q(=) is computable in $ (=) time, implying that the games in the se-
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quence ⌃ have poly(=)-complexity. The difference between this construction of ⌧= and the previ-

ous one is that instead of checking whether q(G) is true for some G  =, the verifier now checks

whether it is false for some G.

Using the gapless compression theorem, we get that if q(G) is true for all G (meaning ( is true),

then we have lC (⌧=) = lC (⌧0
=+1

) � 1 � U (1 � lC (⌧=+1)) for all = 2 N. Rearranging we get

1 � lC (⌧=)  U(1 � lC (⌧=+1)) for all = 2 N. So by induction it holds that

1 � lC (⌧=)  U: (1 � lC (⌧=+: ))

for all : , = 2 N. Taking the limit as : !1, we conclude that lC (⌧=) = 1 for all = 2 N.

On the other hand, if ( is false, then there is some = for which lC (⌧=) = 0. Let = be the

smallest such integer. Working backwards, we deduce that lC (⌧0=) < 1 (by the first item of the

gapless compression theorem), so therefore lC (⌧=�1) < 1, which means that lC (⌧0
=�1

) < 1, and

so on. Thus for all :  = we have lC (⌧: ) < 1.

Finally, the game ⌧( is then chosen to be the first member ⌧1 of the sequence ⌃.

Since deciding the truth of ⇧1-sentences is an undecidable problem, this gives an alternate

proof of the undecidability of determining whether lC (⌧) = 1 for C 2 {@, 2>}, first proved by

Slofstra [13, 38]. His proof is based on very different techniques based on group theory and

approximate representation theory. As mentioned previously, the main result of Slofstra’s work

is that the set of quantum correlations ⇠@ is not closed. We can also prove this separation as a

corollary of our results in section 2.6.3.
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Combining gapped and gapless compression. The main application of our gapless compres-

sion theorem is to combine it with the gapped compression theorem of [14] to prove Theorem 2.1,

which establishes the ⇧2-completeness of deciding whether the quantum value of a nonlocal game

is equal to 1. The two compression theorems, interleaved together, allow us to transform sentences

( of the form 8G 9H q(G, H) (i.e. ⇧2-sentences) to an equivalent nonlocal game ⌧( (i.e. ( is true if

and only if l@ (⌧() = 1).

Fix a ⇧2-sentence ( = 8G 9H q(G, H). The key idea is that ( can be equivalently expressed as

( = 8= (= where = ranges over the positive integers (rather than binary strings) and (= is the ⌃1-

sentence 9< q(=,<), where< also ranges over the positive integers. Leveraging the ⌃1-sentences-

to-nonlocal games reduction from [14], we get that for all = 2 N there exists a nonlocal game �=

(computable from (=) such that l@ (�=) = 1 if and only if (= is true. In particular ( is true if and

only if 8= l@ (�=) = 1.

Now we design a sequence of games ⌃ = (⌧=)=2N encoding the sentence ( as follows.

1 Using the reduction from [14], compute the description of the game �= corresponding

to the ⌃1-sentence (=.

2 Compute the game sequence ⌃0 = (⌧0
=
)=2N by running GaplessCompress

@
on the

description of ⌃.

3 With probability 1

2
, play the game ⌧0

=+1
, the (= + 1)-st game of the sequence ⌃0.

4 With the remaining probability 1

2
, play the game �=

Pseudocode 3: The game ⌧= encoding ⇧2-sentences.

Since the reduction of [14] is polynomial-time computable, the game �= has poly(=) complex-

ity. The compressed game⌧0
=+1

has$ (log =) complexity, due to the guarantees of the A⌧0?;4BB⇠><?A4BB
@
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procedure. This implies that each game ⌧= in the sequence ⌃ has poly(=) complexity. If ( is true

(meaning that (< is true for all<) then we can establish the following relationship betweenl@ (⌧=)

and l@ (⌧=+1):

l@ (⌧=) =
1

2
l@ (⌧0=+1

) + 1

2
l@ (�=) (Definition of the game ⌧=)

=
1

2
l@ (⌧0=+1

) + 1

2
(( true) l@ (�=) = 1 for all =)

� 1

2

⇣
1 � U (1 � l@ (⌧=+1))

⌘
+ 1

2
(Theorem 2.3)

= 1 � U
2

⇣
1 � l@ (⌧=+1)

⌘

This is equivalent to 1�l@ (⌧=)  U

2

⇣
1�l@ (⌧=+1)

⌘
and by induction this means that 1�l@ (⌧=) ⇣

U

2

⌘
:
⇣
1 � l@ (⌧=+: )

⌘
for all : 2 N. As : goes to infinity, this means that l@ (⌧=) is arbitrarily

close to 1, and thus is equal to 1.

On the other hand, if ( is false, then there is some = for which (= is false and consequently

l@ (�=) < 1. This means l@ (⌧=) < 1. By the gapless compression theorem (Theorem 2.3) we

deduce that l@ (⌧0=) < 1, so therefore l@ (⌧=�1) < 1, which means that l@ (⌧0
=�1

) < 1, and so on.

Thus for all :  = we have l@ (⌧: ) < 1.

Finally, the desired game ⌧( is then chosen to be the first member ⌧1 of the sequence ⌃.

We observe that for this argument it did not matter that reduction from ⌃1-sentences (= to

games �= is gapped (in the sense that l@ (�=) = 1 if (= is true and l@ (�=)  1

2
otherwise). All

that mattered was that there was some reduction from ⌃1-sentences to nonlocal games such that

the game value reflects the truth of the sentence. This raises an interesting question for whether it

is possible to prove the ⇧2-hardness result using “just” a gapless compression theorem.
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Gapped compression for commuting operator strategies? It is still unknown whether the

problem of approximating the commuting operator value is as hard as deciding ⇧1-sentences,

which would mean that exact and approximate computation of the commuting operator value are

equivalent in difficulty. Once again, the question boils down to the existence of a gapped compres-

sion procedure for commuting operator strategies. Suppose the following conjecture held:

Conjecture 2.4 (Gap-preserving compression for commuting operator strategies). There exists a

computable map GappedCompress
2>

that, given a sequence of games ⌃ = (⌧=)=2N, outputs a

sequence of games ⌃0 = (⌧0
=
)=2N such that the complexity of ⌃0 is$ (log =), and furthermore if the

complexity of ⌃ is at most poly(=), then for all = 2 N,

• If l2> (⌧=) = 1, then l2> (⌧0=) = 1.

• If l2> (⌧=)  1

2
, then l2> (⌧0=)  1

2
.

We can then design a sequence of games ⌃ as follows. Let " denote a Turing machine that,

given a description of a nonlocal game � (note that this is a single game, rather than a sequence of

games), halts if l2> (�) < 1 and otherwise runs forever. The semidefinite programming hierarchies

of [44, 45], or the procedure described by [53], can be used to implement " .

1 The verifier checks whether q(G) is false for some G  =. If it is, then reject.

2 Compute the description of the nonlocal game ⌧1, the first game of the sequence ⌃.

3 Run " on input ⌧1 for = steps. If it halts, then accept.

4 Otherwise, compute ⌃0 by running GaplessCompress
2>

on the description of ⌃.

5 Play the game ⌧0
=+1

, the (= + 1)-st game of the sequence ⌃0.

Pseudocode 4: The game ⌧= to decide ⇧1-sentences.
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Let ( denote the sentence 8G q(G) for some $ (=)-time computable predicate q. Then the

complexity of ⌃ is poly(=) so the consequences of Theorem 2.4 hold. Suppose ( were true. Then

Step 1 of Pseudocode 4 would never reject. Suppose that l2> (⌧1) < 1. Then by definition, "

will halt in some number of steps ) . Thus l2> (⌧=) = 1 for all = � ) . For = < ) , we have that

l2> (⌧=) = 1 if and only if l2> (⌧0
=+1

) = 1 (by design of⌧=), which is if and only if l2> (⌧=+1) = 1

(by Theorem 2.4). By an inductive argument we get that l2> (⌧1) = 1, which contradicts our

assumption. Thus we get l2> (⌧1) = 1.

On the other hand, suppose that ( was false. Let < denote the least integer such that q(<)

is false. First, it cannot be the case that " halts in fewer than < steps. If it halted in = steps for

= < <, then l2> (⌧=) = 1 by construction. However, by construction and Theorem 2.4 this means

that l2> (⌧=�1) = 1, and so on, ultimately yielding that l2> (⌧1) = 1. This is a contradiction, as

the fact that " halts implies that l2> (⌧1) < 1.

Next, we see that l2> (⌧<) = 0 because q(<) is false. By Theorem 2.4, this means that

l2> (⌧<�1)  1

2
, and so on, ultimately yielding that l2> (⌧1)  1

2
, as desired. Letting ⌧( = ⌧1,

this completes the reduction from the problem of deciding ⇧1-sentences to approximate 2>-value

problem.

We discuss a plausible approach to proving Theorem 2.4 in Section 2.1.2.

Finally, we note that there is something bizarre about the use of the Turing machine " in

this construction. Regardless of whether ( is true or false, in both cases, the verifier in the game

⌧1 never witnesses the Turing machine " halting! Thus, it may appear that "’s halt/non-halt

behavior is irrelevant to the decision procedures of the games {⌧=}. However, if we remove line

3 from 4, then it is no longer clear how to reason about the value of the game ⌧1! In particular,

when ( is true, there is no = for which we can definitively identify the value of ⌧=, because we
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have an “infinite recursion” where ⌧= is the same game as the compression of ⌧=+1, which in turn

is the same game as the compression of ⌧=+2, and so on. Thus, inserting " in the description of

the games seems to force the sequence of games {⌧=} to “examine its own (commuting operator)

value,” which in turn allows us – mathematicians looking in from the outside – to pin down the

value of ⌧= for all =. We find it a fascinating question of whether it is possible to deduce the value

of the games {⌧=} with line 3 removed.6

Are compression theorems necessary? We have just demonstrated that, equipped with the ap-

propriate compression procedures, we can characterize the complexity of the quantum and com-

muting operator value of nonlocal games. Could compression theorems be necessary? That is,

does knowing that (say) exactly computing the commuting operator value is equivalent to deciding

⇧1-sentences imply the existence of a compression procedure like the one given by Theorem 2.3?

In [54], it was shown that MIP⇤ = RE (i.e. the ⌃1-hardness of the approximate @-value prob-

lem) implies a gap-preserving compression theorem for quantum strategies (i.e., Theorem 2.2).

We show that this equivalence between compression and complexity of nonlocal games is more

general:

• The ⇧1-hardness of the approximate 2>-value problem implies a gap-preserving compres-

sion theorem for commuting operator strategies.

• The ⇧1-hardness of the exact 2>-value problem implies a gapless compression theorem for

commuting operator strategies.

• The ⇧2-hardness of the exact @-value problem implies a gapless compression theorem for
6This trick of inserting the Turing machine " into the description of the game is also used by [14] to construct an

explicit game whose commuting operator value differs from its quantum value.
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quantum strategies.

We prove these equivalences in Section 2.6.5.

Relation to previous work The idea of using compression in order to obtain complexity lower

bounds for nonlocal games was first due to Ji [17]. There, he showed that the complexity of decid-

ing between l@ (⌧) = 1 and l@ (⌧)  1 � 1/poly( |⌧ |) where |⌧ | denotes the description length

of the game ⌧ is at least as hard as solving NEXP-complete problems. His result, however, only

applied to games with more than two players (in fact his result applies for games with 10 players).

The techniques used to compress games use a variety of tools from quantum information theory,

including quantum error correcting codes and the Feynman-Kitaev history state construction. This

compression technique was further developed by [12], who prove a gapless compression theorem

that can be recursively composed in order to obtain arbitrarily large complexity lower bounds for

nonlocal games. The lower bounds obtained by [12] still only apply to games with three or more

players, however. This is a fundamental limitation of the compression approach of [17, 12] be-

cause they rely on using quantum error-correcting codes to perform secret sharing, which require

3 or more parties.

Obtaining complexity lower bounds for two player games have wider implications and require

new techniques. For example, the connection between Connes’ Embedding Problem and the ap-

proximate @-value problem only hold for two player games. Compressing two-player nonlocal

games was first pioneered by [48] and then further developed by [14] to prove MIP⇤ = RE. These

works use very different tools such as classical and quantum low-degree tests and probabilistically

checkable proofs (PCPs).7 The gapless compression theorem of this paper is based on a simpli-
7View Section 2 of [48] for a more in-depth overview of the differences.
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fied version of these techniques, which allows us to obtain our ⇧2-hardness result for two-player

games.

In [54], we obtained ⇧2-hardness for the exact @-value problem for games with three or more

players. This is because we combined the gapless compression theorem of [12] with the gapped

compressed theorem of [14]. However as mentioned the requirement to have games with at least

three players is intrinsic to the work of [17, 12]. Furthermore, all previous works only study the

setting of finite-dimensional (i.e. @-type) strategies; ours is the first to study compression of games

in the commuting operator setting.

2.1.2 Overview of the gapless compression theorem

We now provide an overview of the proof of Theorem 2.3, our gapless compression theorem.

The compression theorem technically is about a procedure for transforming a sequence of games

into another, but for simplicity we discuss compression as transforming individual games.

The high-level structure of the compression procedure follows the paradigm first established

by [48] and developed further by [14]. Let ⌧ denote an “input” game where the question lengths,

answer lengths, and complexity of the decision procedure are poly(=). The game ⌧ is transformed

into a “compressed” game ⌧0 where the complexity of the decision procedure is poly log(=). This

transformation consists of two steps, the first one called Question Reduction and the second called

Answer Reduction. We describe these two steps next.

Fix an input game ⌧ = (X,A,⇡). All games involved use the uniform distribution over

questions; for this reason we omit mention of the question distribution when specifying a nonlocal

game. Fix a value type C 2 {@, 2>}.
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Question Reduction

The Question Reduction step transforms⌧ into the Introspection game⌧ intro = (Xintro
,Aintro

,⇡
intro)

where

log |Xintro | = $ (log log |X|)

log |Aintro | = poly(log |A|)

Complexity of ⇡intro = poly(Complexity of ⇡) .

The Introspection game ⌧ intro is equivalent to ⌧ in the sense that the value of lC (⌧ intro) = 1 if and

only if lC (⌧) = 1.

At an intuitive level, the question lengths are reduced in ⌧ intro by asking the players to “ask

themselves” – i.e., to introspect – their own questions from X. The players in ⌧ intro are each asked

to sample a question G 2 X and answer with 0 2 A as they would have answered in the original

game ⌧. If the players’ responses are (G, 0) and (H, 1), the decision procedure in ⌧ intro will check

that ⇡ (G, H, 0, 1) = 1.

In order for the values of ⌧ and ⌧ intro to be meaningfully related, we need to ensure that (a)

the players sample their introspected questions G and H from the uniform distribution (instead of,

say, always picking a fixed (G⇤, H⇤) for which they have prepared winning answers), and (b) the

first player does not have any knowledge of the second player’s question H and the second player

does not have any knowledge of the first player’s question G.

Forcing players to behave honestly according to (a) and (b) crucially relies on a property called

rigidity that holds for some nonlocal games. A nonlocal game ⌧ is rigid if the state and measure-
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ment operators of any near optimal strategy for ⌧ satisfy very rigid constraints. For introspection,

we need a family of games, called Question Sampling games where the =th member of this fam-

ily is denoted by QS
=
. Each game has two special questions labeled by measure-standard-basis

and measure-orthogonal-basis and players in QS
=

are required to respond to these questions with

strings in {0, 1}=. Furthermore these games exhibit rigidity in the following sense; in any near op-

timal strategy for QS
=

the players must share = EPR pairs, and the player answering the measure-

standard-basis (resp. measure-orthogonal-basis) question, must measure their share of entangled

state using a measurement that is close, in some metric, to the standard basis measurement (resp.

orthogonal basis {|+i, |�i} measurement).

For simplicity suppose that the question set for the game ⌧ is X = {0, 1}=. Then the Introspec-

tion game ⌧ intro, at its core, is the QS
=

game8: to introspect the verifier just asks the player the

measure-standard-basis question. The verifier then takes advantage of the other special question,

measure-orthogonal-basis, to ensure that the properties (a) and (b) of introspection questions are

satisfied. The proof of this fact is a direct consequence of the rigidity property of the Question

Sampling game as described earlier.

There are many candidate games for Question Sampling if we only cared about the rigidity

property mentioned above. One example is the parallel-repeated Magic Square game [55]. What

makes the search for a family of games QS
=

more challenging is the additional requirement im-

posed by the property

log |Xintro | = $ (log log |X|).

To satisfy this requirement the Question Sampling can have at most poly(=) questions. So overall
8To be more precise the game ⌧ intro is QS

=
extended so that it has a small number of additional special questions.

The cross-checks between these special questions force the players to behave “honestly” (i.e., to sample (G, H) from
the uniform distribution), or risk losing the game with some nonzero probability.
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QS
=

must be a game with poly(=) questions for which any optimal strategy uses = EPR pairs. Any

family of games satisfying this property is said to be efficiently rigid. Efficiency is referring to

the fact that games with small number of questions are certifying Hilbert spaces of large dimen-

sion (2= in the case of QS
=
). The family of games where the =th game is the =th parallel-repeated

Magic Square game is not efficiently rigid because the number of questions grows as 2
$ (=) . In Sec-

tion 2.3.2 we introduce a family of games called 2-out-of-=Magic Square and prove it is efficiently

rigid.

Introspection first appeared in [48] followed by a more sophisticated version in the MIP⇤ = RE

result. To obtain the gapped compression in that paper, the Question Reduction step must also

be gap-preserving, i.e., in addition to the above requirements for introspection, it must be that if

l@ (⌧) < 1/2, then l@ (⌧ intro) < 1/2. For gapped introspection, in addition to efficient rigidity, we

need to make sure that in any strategy winning QS
=

with probability at least 1�Y, the measurement

for measure-standard-basis question is poly(Y, log =)-close (in operator norm) to the standard-basis

measurement. The crucial point is that the error function has logarithmic dependence on =. This

is what we call an efficiently robust rigidity result. The 2-out-of-= Magic Square game is not

highly robust because the error function has a polynomial dependence on =. The game used in

the MIP⇤ = RE result that exhibits this additional robustness requirement is called the quantum

low-degree-test [50]. The proof of rigidity for this game is considerably more complicated than

the proof of rigidity for the 2-out-of-= Magic Square game. Also, in our setting we only need

to introspect games with uniform question distributions. We believe these simplifications in the

gapless setting help illuminate the core ideas behind introspection.
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Answer Reduction

The Answer Reduction step transforms ⌧ into the game ⌧ans = (Xans
,Aans

,⇡
ans) where

log |Xans | = poly(log |X|)

log |Aans | = $ (1)

Complexity of ⇡ans = poly(log Complexity of ⇡) .

The game ⌧ans is equivalent to ⌧ in the sense that the value of lC (⌧ans) = 1 if and only if

lC (⌧) = 1.

The idea is to delegate computing the decision procedure ⇡ (G, H, 0, 1) to the players. Then have

them certify their computation using a constant sized certificate. In this paper we use the Cook-

Levin reduction: this is an efficient transformation that maps a Turing machine " and input string

F to a 3SAT formula i" and variable assignment cF such that " (F) = 1 if and only if cF satisifes

i" . Furthermore, F is embedded in the beginning of cF . Clauses of the 3SAT formula i" can be

computed hyper-efficiently (which allows us to exponentially reduce the verifiers runtime). We use

this to reduce the Turing machine ⇡G,H, that computes the decision procedure for fixed questions

(G, H), and the players answers (0, 1) to a 3SAT formula iG,H and assignment c0,1. The verifier

will now compute a random clause of this formula, and ask the players to provide the assignments

specified by c0,1 to the variables in the clause.

There are three immediate issues we must address in this scheme. First, in our current game no

individual player has access to both questions to produce the 3SAT formula iG,H. Secondly, if we

allow one of the players to have access to both questions, in order to compute iG,H, we must ensure

71



that the answers (0, 1) (and certificate c0,1) are produced in such way that 0 only depends on G

and 1 only depends on H. Lastly, we have to make sure the player in fact returns the corresponding

assignments specified by c0,1 and does not change this depending on the clause we query.

Fortunately, all three issues can be addressed by oracularization. This takes our original game

and transforms it to a new game ⌧orac where the verifier sends one player a question G 2 X and the

other a pair of questions (G, H) 2 X2. When a player receives a single question G we call them an

isolated player. When a player receives a pair (G, H) we call them an oracle player. The players

win if the oracle player responds with an answer pair (0, 1) 2 A2 such that ⇡ (G, H, 0, 1) = 1 and

the isolated player responds with answer 0 (resp. responds with answer 1). Intuitively, in ⌧orac an

oracle player must “simulate” the behavior of the two players in ⌧, and the isolated player (who

only receives half of the oracle question) is used to check that the oracle player’s answers (0, 1)

are produced in a way that 0 only depends on G and 1 only depends on H, solving our first two

issues.

Now we can go ahead and apply the Answer Reduction protocol on the game ⌧orac, where the

oracle player responds with assignments for our clause queries as described before, but the isolated

player is asked a random bit of their original answer 0 (resp. 1). In particular we query only from

those clauses which contain at least one variable from the beginning of c0,1 which embeds 0 (resp.

1), we make sure the two players answers match on this assignment. This allows us to continue

enforcing the no communication requirement after Answer Reduction. It also ensures that the

oracle player is in fact providing assignments to the clause variables from c0,1. Therefore ⌧ans

uses constant sized answers and has exponentially more efficient verifier complexity.
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From gapless to gapped compression

We highlight the primary differences between our gapless compression theorem and the gapped

compression theorem of [14].

• In MIP⇤ = RE, instead of using the Cook-Levin reduction, the Answer Reduction trans-

formation uses probabilistically checkable proofs (PCPs) in order to control the amount of

gap shrinkage. The soundness of the PCP construction in [14] is based on the soundness

of something called the classical low-degree test against entangled provers [26], which is a

very technically challenging part of their analysis.

• As explained earlier, the Question Reduction step in MIP⇤ = RE uses the robust rigidity of

the quantum low-degree test [50]. Contrast this with our gapless compression theorem that

does not require a robust rigidity test.

• The proof of MIP⇤ = RE uses a parallel repetition theorem. Roughly speaking, parallel

repetition theorems state that if the quantum value of a game ⌧ is less than 1, then the value

of the game ⌧=, that is obtained from ⌧ by playing = instances of ⌧ in parallel, decays

exponentially with =. This is needed because both the Question Reduction and Answer

Reduction transformations shrink the gap by some amount, and parallel repetition is used to

amplify the gap back to some constant amount.

In this paper we transfer many of the ideas from [14] to the infinite dimensional setting, al-

lowing us to get a gapless compression theorem for commuting operator strategies. As discussed

earlier proving Theorem 2.4 requires a gapped compression theorem for the commuting operator

strategies. Just like in the case of @-strategies, we would also need to establish commuting-operator
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analogues of the three ingredients described above: (1) soundness of the classical low-degree test,

(2) soundness of the quantum low-degree test, and (3) a parallel repetition theorem.

The first item has been resolved in a forthcoming paper [25]. The second item requires a proof

that the quantum low-degree test is sound against commuting operator strategies. Finally, parallel

repetition is well studied in the context of (finite-dimensional) quantum strategies [56, 57, 52]

but nothing is known yet in the context of commuting operator strategies (aside from the parallel

repetition result of [21], but this only holds for XOR games).

Given the commuting-operator analogues of these tools, however, the ⇧1-completeness of the

approximate 2>-value problem should then follow from the argument described in Section 2.1.1.

2.1.3 The synchronous strategies framework

As mentioned, another goal of this paper is to present the proof of the gapless compression

theorem (Theorem 2.3) in a way that distills, into their simplest form, the techniques and concep-

tual components that go into establishing its much more sophisticated cousin, the gap-preserving

compression theorem of [14]. To that end, we express and prove all our results in the framework

of synchronous strategies, a class of strategies first studied by [58]. Working with these strategies

simplifies our arguments both notationally as well as conceptually (as compared to working with

general nonlocal games and general strategies).

A synchronous strategy ✓ for a game ⌧ is specified by a separable Hilbert space H (which

could be infinite-dimensional), a von Neumann algebra � on H , a tracial state on the algebra �,

9 and a set of projective measurements {"G}G2X in the algebra � (each "G is a set of projections
9A von Neumann algebra � on a Hilbert space H is a ⇤-subalgebra of B(H) (the set of bounded operators on H )

that contains the identity operator and is closed under the weak operator topology. A tracial state g on the algebra �
is a positive, unital linear functional that satisfies the trace property: TR (�⌫) = TR (⌫�) for all �, ⌫ 2 �.
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{"G

0
}02A summing to the identity). Given questions (G, H), the probability of obtaining answers

(0, 1) is given by g("G

0
"
H

1
). Thus the probability that the strategy ✓ succeeds in the game ⌧ is

given by
’
G,H2X

`(G, H)
’
0,12A

⇡ (G, H, 0, 1) g
⇣
"
G

0
"
H

1

⌘
.

Readers who are not familiar with von Neumann algebras and tracial states may find the finite-

dimensional setting easier to understand. When H = CA for some dimension A , then we can

without loss of generality take the algebra � to be the set B(H) of all bounded operators on H

(which in finite dimensions is simply the set of all linear operators). In this case there is a unique

tracial state, which is the normalized trace g(-) = 1

A
tr(-). In terms of strategies for nonlocal

games, this corresponds to the players using the same projective measurements for each question

and sharing the maximally entangled state |�i = 1p
A

Õ
A

4=1
|4i |4i. Such a strategy has the property

that if both players receive the same question G 2 X, they always output the same answer 0 2 A

(this is why these strategies are called “synchronous”).

In the infinite-dimensional setting, synchronous strategies give rise to commuting operator

strategies: for every synchronous strategy ✓ = (g, {"G}) with Hilbert space H , there exist an-

other Hilbert space H 0, a state |ki 2 H 0, and measurements {�G}, {⌫G} on H 0 for the players

respectively such that for all G, H 2 X and 0, 1 2 A, the operators �G
0

and ⌫H
1

commute and we

have

g("G

0
"
H

1
) = hk |�G

0
⌫
H

1
|ki .

For a proof, see [58, Theorem 5.5].

Remark 1. On the need to specify a von Neumann algebra � as part of the strategy: unlike in the
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finite-dimensional setting, we cannot without loss of generality take � to be all of B(H); this is

because there may not necessarily be a tracial state on B(H).

Synchronous strategies arise naturally when considering synchronous games: these are games

where the players must output the same answers whenever they receive the same question (i.e.

⇡ (G, G, 0, 1) = 0 whenever 0 < 1). This simple restriction on the rules of the game has the

following consequences for optimal strategies:

Theorem 2.5 (Adapted from Theorem 3.2 of [59] and Theorem 3.6 of [60]). Let⌧ = (X,A, `,⇡)

be a synchronous game such that `(G, G) > 0 for all G 2 X. Then if l2> (⌧) = 1 then there exists

a synchronous strategy ✓ = (g, {"G}) for ⌧ that achieves value 1. If furthermore l@ (⌧) = 1,

then there exists a sequence {✓=}=2N of finite-dimensional synchronous strategies whose values

approach 1.

Many games studied in quantum information theory and theoretical computer science are syn-

chronous games; for example the games constructed in the proof of MIP⇤ = RE are all syn-

chronous. In this paper, we also focus exclusively on synchronous games. For this reason, we

focus on analyzing the synchronous value of games: we define

l
B

2>
(⌧) := sup

synchronous✓
l(⌧,✓) and l

B

@
(⌧) := sup

finite-dimensional
synchronous✓

l(⌧,✓) .

Since synchronous strategies correspond to commuting operator strategies, we have that lB
2>
(⌧) 

l2> (⌧) and similarlylB
@
(⌧)  l@ (⌧); Theorem 2.5 implies thatlB

C
(⌧) = 1 if and only iflC (⌧) =

1 for C 2 {@, 2>}. Thus we do not lose any generality by restricting our attention to synchronous

strategies. To be more precise, for a synchronous game ⌧, the exact (resp. approximate) C-value

76



problem, i.e., deciding between lC (⌧) = 1 and lC (⌧) < 1 (resp. deciding between lC (⌧) = 1 and

lC (⌧)  1/2), is equivalent to the problem of deciding between lB
C
(⌧) = 1 and lB

C
(⌧) < 1 (resp.

deciding between lB
C
(⌧) = 1 and lB

C
(⌧)  1/2).

The benefits of working within the synchronous games framework is that strategies only re-

quire specifying one set of measurements for both players (instead of having to keep track of one

for Alice and one for Bob), and furthermore the state g has the cyclic trace property. Working in the

synchronous setting significantly simplified many of our proofs, in particular those of rigidity and

introspection. Previous rigidity results needed to characterize the shared state upto isometry and

find a concrete representation of the measurement operators as matrices. In the synchronous set-

ting however we are able to completely sidestep these technical issues. We need only to show that

certain algebraic relations such as commutation or anticommutation are satisfied by any optimal

strategy, which allows for a much cleaner argument. Furthermore, working in the synchronous

games framework allows for a unified treatment of both the finite- and infinite-dimensional set-

tings.

This paper builds upon arguments and techniques from a number of previous results. There

has been great success in pinning down the algebra of optimal strategies within the synchronous

games setting. It is our hope that expressing our results in the language of synchronous games will

facilitate connecting our work to the world of functional analysis and operator algebras.

2.2 Preliminaries

For an integer 3 2 N we write [3] to denote {1, 2, . . . , 3}. For functions 5 , 61, . . . , 6; : N: !

N, we write 5  poly(61, . . . , 6;) if there exists a constants ⇠, ⇢ � 0 such that for all sufficiently
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large 01, . . . , 0: ,

5 (01, . . . , 0: )  ⇠
✓÷
8=1

68 (01, . . . , 0: )⇢ .

Let �(G1, . . . , G: ) denote a :-input Turing machine, which is a Turing machine with : input

tapes, a single work tape, and a single output tape. Then TIME� (G1, . . . , G: ) denotes the maximum

of the description length of �, and the running time of � on input (G1, . . . , G: ) (which may be 1

if � never halts on that input). For an integer = 2 N, we let TIME� (=) denote the maximum of

TIME� (=, G2, . . . , G: ) over all G2, . . . , G: 2 {0, 1}⇤ (where = is provided to � in binary).

2.2.1 Algebras, states, and norms

Let H be a separable Hilbert space and let B(H) denote the set of bounded linear operators on

H . We write 1H to denote the identity operator on H (and simply write 1 when the Hilbert space

is clear from context).

A von Neumann algebra on a Hilbert space H is a unital ⇤-subalgebra of bounded operators

B(H) that is closed in the weak operator topology. Given two von Neumann algebras � and � on

Hilbert spaces H�,H⌫ respectively, the tensor product algebra � ⌦� is defined to be the closure

under the weak operator topology of the ⇤-subalgebra generated by {� ⌦ ⌫ 2 B(H� ⌦H⌫) : � 2

�, ⌫ 2 �}.

Let � ✓ B(H) denote a von Neumann algebra on H . We say that a positive linear functional

g : � ! C is

• Unital if g(1) = 1 ;

• Normal if for all families (%8)82� of pairwise orthogonal projections in �, we have g
⇣ Õ

82� %8
⌘
=

Õ
82� g(%8) ;
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• Tracial if for all �, ⌫ 2 �, we have g(�⌫) = g(⌫�) ;

In this paper, g will always represent a positive linear functional that is tracial, normal, and uni-

tal. We call such functionals a normal tracial state. For brevity we often drop the “normal”

qualifier. For an in-depth reference to von Neumann algebras, we refer the reader to Blackadar’s

textbook [61].

We record some basic properties of tracial states. First, tracial states satisfy the Cauchy-

Schwarz and Hölder inequalities, i.e.

|g(�⇤⌫) |2  g(�⇤�) g(⌫⇤⌫) and |g(�⇤⌫) |  k�k · g( |⌫ |)

where k · k denotes the operator norm, and |⌫ | =
p
⌫
⇤
⌫. Second, tracial states give rise to a

seminorm on �: we define the g-norm of an operator � 2 � to be

k�kg =
p
g(�⇤�) =

p
g(��⇤).

The k · kg norm satisfies the triangle inequality: i.e., k� + ⌫kg  k�kg + k⌫kg.

If H is finite dimensional (i.e. isomorphic to C3) then there is a unique tracial state on the

algebra B(H), which is the dimension-normalized trace 1

3
tr(�). Thus in this case the g-norm is

the normalized Frobenius norm.

Proposition 2.6. If g and f are tracial states on von Neumann algebras � and � respectively,

then g ⌦ f is a tracial state on the von Neumann algebra � ⌦�.

Proposition 2.7. Let �, ⌫ 2 �. Then k�⌫kg  k�k · k⌫kg.
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Proof.

k�⌫kg =
p
g(⌫⌫⇤�⇤�)


p
k�⇤�k · g(⌫⌫⇤) (Hölder)

= k�k · k⌫kg

É

The following proposition allows us to exchange any operator � in any expression ⇠�⇡ with

a nearby operator ⌫ and obtain a new expression ⇠⌫⇡ close to the original expression.

Proposition 2.8. Let ⇠,⇡ 2 � be any operators with k⇠k, k⇡k  1. If �, ⌫ 2 � and k��⌫kg 

Y, then k⇠�⇡ � ⇠⌫⇡kg  Y and |g(⇠�⇡ � ⇠⌫⇡) |  Y.

Proof. By Proposition 2.7

k⇠ (� � ⌫)⇡k2
g
 k⇠k2k⇡k2k� � ⌫k2

g
 k� � ⌫k2

g
.

We also have

|g(⇠ (� � ⌫)⇡) |2 = |g(⇡⇠ (� � ⌫)) |2

 g(⇡⇠⇠⇤⇡⇤)g((� � ⌫)⇤(� � ⌫)) (Cauchy-Schwarz)

 k� � ⌫k2
g
.

In the last line we used that g(⇡⇠⇠⇤⇡⇤)  1. Indeed, if k" k  1, then by Hölder |g(") | 

k"⇤kg(�)  1. É
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In applications of Proposition 2.8 we usually find ourselves in a situation where ⇠ and ⇡ are

products of projections and unitaries. Since the operator norm is submultiplicative, i.e., k"# k 

k" kk# k, the operator norm of any product of projections and unitaries is bounded above by 1.

Thus the assumptions of the proposition are readily verified.

Proposition 2.9. Let* be any unitary. If |g(1 �*) |  Y, then k1 �*kg 
p

2Y

Proof.

k1 �*k2
g
= g((1 �*)⇤(1 �*)) = g(21 �* �*⇤)  2|g(1 �*) |.

É

2.2.2 Measurements and distance measures on them

Let � denote a von Neumann algebra with a normal tracial state g. Let " = {"0}02A and

# = {#0}02A denote sets of operators in �, indexed by a finite set A. Then we measure the

distance between " and # , denoted by k" � # kg, as

k" � # kg =
s’
02A
k"0 � #0k2g .

We say that " is X-far from # , denoted by "0 ⇡X #0, if k" � # kg  X. We also occasionally use

the notation k" kg =
qÕ

02A k"0k2g.

Lemma 2.10. Let " = {"0}02A and and # = {#0}02A denote sets of operators indexed by a

finite set A. Then

k" � # kg  k" kg + k# kg .

81



Proof. We compute:

k" � # k2
g
=

’
02A
k"0 � #0k2g


⇣ ’
02A
k"0k2

⌘
+

⇣ ’
02A
k#0k2

⌘
+ 2

⇣ ’
02A
k"0kg · k#0kg

⌘


⇣ ’
02A
k"0k2

⌘
+

⇣ ’
02A
k#0k2

⌘
+ 2

s’
02A
k"0k2g ·

s’
02A
k#0k2g

=
⇣
k" kg + k# kg

⌘2

.

The first inequality follows from the triangle inequality of the g-norm, and the second inequality

follows from Cauchy-Schwarz. É

A positive operator-valued measure (POVM) on H with outcomes in a finite set A is a set

of positive operators {"0}02A such that
Õ
02A "0 = 1. A projective measurement is a POVM

such that each element "0 is a projection. For a projective measurement " = {"0} it holds

that "0"1 = X0,1"0 where X0,1 is Kronecker delta. So operators belonging to the same projective

measurement commute. We say two measurements " = {"0} and # = {#1} commute, if "0#1 =

#1"0 for all 0, 1.

To denote “data processed” measurements, i.e., apply a function 5 : A ! B to the outcome

of a measurement, we use the following notation: "[ 5 ] denotes the POVM with elements

"[ 5 |1] =
’

0: 5 (0)=1
"0

for all 1 2 B. As an example, suppose A = {0, 1}= and B = {0, 1}. Then we write "[0 7!08] to

denote the processed measurement that measures a string 0, and then returns the 8-th bit of 0. To
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refer to the element of "[0 7!08] corresponding to outcome 1 2 {0, 1}, we write "[0 7!08 |1] . For a

predicate % : A ! {0, 1}, we also use the notation

"[0:%(0)] =
’

0:%(0)=1

"0 .

For example, the operator "[0: 5 (0)<1] denotes the sum over all "0 such that 5 (0) < 1.

We introduce two important distance measures between POVMs that will be used throughout

this paper. All operators referred to in the following are assumed to be elements of a von Neumann

algebra � on which a tracial state g is defined.

The first distance measure we define is called inconsistency. Let " , # denote POVMs with

outcomes in a finite set A (called the answer set or outcome set). We say that " and # are

X-inconsistent if
’

0,12A:

0<1

g("0 #1)  X

When the answer set A is clear from context, we write "0 'X #0 to denote that " and # are

X-inconsistent.

The second distance measurement we introduce is called closeness. We say that sets of POVMs

" , # are X-far if

k" � # kg  X.

Similarly, when the answer set A is clear from context, we write "0 ⇡X #0 to denote that " and

# are X-far. Observe that this notion of closeness is also well-defined when the operators "0, #0

are not necessarily positive. Thus we will also write "0 ⇡X #0 to denote closeness of arbitrary

operator sets that are indexed by an answer set A.
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2.2.3 Utility lemmas about measurements

We now establish several utility lemmas concerning consistency, closeness, and measurements.

Lemma 2.11 (Cauchy-Schwarz for operator sets). Let " = {"0}02A and # = {#0}02A denote

sets of operators (not necessarily POVMs). Then

��� ’
02A

g("0 · #0)
���2  ⇣ ’

02A
k"0k2g

⌘
·
⇣ ’
02A
k#0k2g

⌘
.

Proof. For every 0 2 A, we have that |g("0 · #0) |  k"0kg · k#0kg by the Cauchy-Schwarz

inequality for tracial states. Applying the triangle inequality and Cauchy-Schwarz again we have

��� ’
02A

g("0 ·#0)
���2  ⇣ ’

02A

���g("0 ·#0)
���⌘2


⇣ ’
02A
k"0kg ·k#0kg

⌘2


⇣ ’
02A
k"0k2g

⌘
·
⇣ ’
02A
k#0k2g

⌘
.

É

Lemma 2.12 (Data processing inequality for consistency). Let " = {"0} and # = {#0} be

POVMs with outcomes in A such that "0 'X #0. Let 5 : A ! B. Then

"[ 5 |1] 'X #[ 5 |1] .

Proof.

’
1<102B

g("[ 5 |1]#[ 5 |10]) =
’

1<102B
0,0
02A

5 (0)=1, 5 (00)=10

g("0#00) 
’

0<002A
g("0#00)  X.

É
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Lemma 2.13 (Consistency to closeness). Let " = {"0} and # = {#0} be POVMs with outcomes

in A such that "0 'X #0. Then "0 ⇡p2X
#0.

Proof.

s’
0

k"0 � #0k2g =
s’

0

g(("0 � #0)2)


s’

0

g("0 + #0 � "0#0)

=
s

2 � 2

’
0

g("0#0)


s

2

’
0

g("0 (1 � #0))


p

2X.

The first inequality follows because "0 � "2

0
� 0 as {"0} are POVMs. The second inequality

follows from Jensen’s inequality. É

Lemma 2.14 (Closeness to consistency). Let " = {"0} be a projective POVM and let # =

{#0}02A be a POVM with outcomes in A. Suppose that "0 ⇡X #0. Then "0 'X #0.

Proof. Applying Cauchy-Schwarz twice, we get

’
0

g("0 (1 � #0)) =
’
0

g("0 ("0 � #0))


s’

0

g("2
0
) ·

s’
0

g(("0 � #0) ("0 � #0)⇤)

 X
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where we used that
Õ
0
g("2

0
) = 1. É

Lemma 2.15 (Consistency implies similar probabilities). Let " = {"0} and # = {#0} be POVMs

with outcomes indexed by A. Suppose that "0 'X #0. Then

’
02A

|g("0 � #0) |  2X.

Proof. Let (G = {0 : g("0) > g(#0)} and )G = {0 : g(#0) � g("0)}. Then

’
02A

|g("0 � #0) | =
’
02(G

g("0 � #0) +
’
12)G

g(#0 � "0).

Then, since g("0#0)  g(#0), we have

’
02(G

g("0 � #0) 
’
02(G

g("0 (1 � #0)) 
’
02A

g("0 (1 � #0))  X.

Similarly
Õ
12)G g(#0 � "0)  X. This completes the proof. É

Lemma 2.16. Let " = {"0}02A , # = {#0}02A be sets of operators (not necessarily POVMs),

and let ' = {'1}12B be a set of operators such that
Õ
1
'
⇤
1
'1  1. Suppose that "0 ⇡X #0. Then

'1"0 ⇡X '1#0 where the answer summation is over (0, 1) 2 A ⇥ B. Similarly, if
Õ
1
'1'

⇤
1
 1,

we have "0'1 ⇡X #0'1.
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Proof. We prove the approximation '1"0 ⇡X '1#0:

’
02A,12B

k'1 ("0 � #0)k2g =
’

02A,12B
g

⇣
("0 � #0)⇤'⇤1'1 ("0 � #0)

⌘

=
’
0

g

⇣
("0 � #0)⇤

⇣’
1

'
⇤
1
'1

⌘
("0 � #0)

⌘


’
0

g

⇣
("0 � #0)⇤("0 � #0)

⌘

=
’
0

k"0 � #0k2g

 X2
.

where in the first inequality we used the assumption that
Õ
1
'
⇤
1
'1  1. The proof for the approxi-

mation "0'1 ⇡X #0'1 is similar. É

The following lemma states that POVMs that are almost projective (in the sense that each

POVM element is close to its square) is close to a projective maesurement. A version of this was

first proved in the finite-dimensional setting by [62], improved quantitatively in [26], and recently

extended to the setting of von Neumann algebras by de la Salle [63].

Lemma 2.17 (Projectivization of POVMs [63]). Let {"0} ⇢ � be a POVM with outcomes indexed

by a finite set A. Suppose that the following holds:

’
0

g("0 � "2

0
)  Y.

Then there exists a projective measurement {%0} ⇢ � such that

%0 ⇡X?A> 9 "0
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where X?A> 9 = X?A> 9 (Y) is a function that depends on Y (but independent of A) and goes to zero as

Y ! 0.

The next lemma allows us to “paste” multiple approximately-commuting measurements to-

gether to form a joint projective measurement.

Lemma 2.18 (Pasting lemma). Let {" (1)
,"

(2)
, . . . ,"

( ) } ⇢ � be a set of projective measure-

ments with outcomes in a finite set A. Suppose that for all 8 < 9 , we have that

"
(8)
0
"

( 9)
1
⇡Y " ( 9)

1
"

(8)
0

where the answer summation is over (0, 1) 2 A2. Then there exists a projective measurement

' = {'Æ0} ⇢ � with outcomes in A such that for all 8 2 [ ],

'[ Æ0 7!08 |1] ⇡X?0BC8=6 "
(8)
1

where X?0BC8=6 = X?0BC8=6 ( , Y) is a function that goes to 0 as Y ! 0.

We prove Theorem 2.18 in Section 2.7.

2.2.4 Nonlocal games, strategies, and verifiers

Nonlocal games. A nonlocal game ⌧ is a tuple (X,A, `,⇡) where X is a finite question set, A

is a finite answer set, ` is a probability distribution over X⇥X, and ⇡ : X⇥X⇥A⇥A ! {0, 1} is a

function called the decision predicate. A game ⌧ is synchronous if for all G 2 X, ⇡ (G, G, 0, 1) = 1

if and only if 0 = 1. We call a question pair (G, H) 2 X ⇥ X trivial if ⇡ (G, H, 0, 1) = 1 for all

(0, 1) 2 A ⇥A; otherwise we call (G, H) nontrivial.
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In this paper, we only consider games that are synchronous and whose question distribution is

uniform over the question set; thus we denote games ⌧ by tuples (X,A,⇡).

Strategies. A tracial strategy ✓ for a game ⌧ = (X,A, `,⇡) is a pair (g, {"G}G2X) where there

is a separable Hilbert space H such that {"G} is a set of POVMs on H with outcomes in A, and

g is a normal tracial state on a von Neumann algebra � containing the set {"G

0
}G,0. The value of

a tracial strategy ✓ in ⌧ is defined as

l(⌧,✓) =
’
G,H2X

`(G, H)
’
0,12A

⇡ (G, H, 0, 1) g("G

0
"
H

1
)

A tracial strategy ✓ is called synchronous if {"G} are projective measurements. A tracial strategy

✓ is finite dimensional if H = C3 for some 3. A tracial strategy ✓ commutes on a set ⇠ ✓ X ⇥ X

if for all (G, H) 2 ⇠ measurements "G and "H commute, i.e., "G

0
"
H

1
= "H

1
"
G

0
for all 0, 1 2 A.

The synchronous commuting operator value of a synchronous game ⌧, denoted by lB
2>
(⌧), is

defined as the supremum of l(⌧,✓) over all synchronous strategies ✓ for ⌧. The synchronous

quantum value of ⌧, denoted by lB
@
(⌧), is defined the same except the supremum is restricted to

finite-dimensional synchronous strategies.

The entanglement requirement E
⇣
⌧, U

⌘
for a game⌧ and U 2 [0, 1] is the minimum dimension

of any finite-dimensional synchronous strategy ✓ for ⌧ with quantum value at least U. If no such

strategy exists then E
⇣
⌧, U

⌘
= 1.

We introduce the notion of an oracularizable strategy; the significance of this notion is that the

answer reduction transformation (discussed in Section 2.5) requires games to have oracularizable

strategies. “Oracularizability” is an invariant maintained by our compression procedure (as well as
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the compression procedures of [48, 14]).

Definition 2.19 (Oracularizable strategy). A synchronous strategy ✓ for a synchronous game ⌧ is

oracularizable if the strategy commutes on the set of nontrivial questions of ⌧.

Verifiers. We introduce the notion of a verifier, which gives a uniform way to describe infinite

sequences of nonlocal games.

Definition 2.20 (Verifiers). Let ⌃ = (⌧=)=2N denote an infinite sequence of synchronous games

where ⌧= = (X=,A=,⇡=) and the sets X= = {0, 1}✓= ,A= ⇢ {0, 1}⇤ for some polynomial-time

computable function ✓= of =. A verifier � for ⌃ is a pair (⇡,⇠) of Turing machines where ⇡ is a

5-input Turing machine and ⇠ is a 3-input Turing machine, such that for all = 2 N, the following

hold:

1. ⇡ (=, G, H, 0, 1) = ⇡= (G, H, 0, 1) for all (G, H) 2 X= ⇥ X= and (0, 1) 2 A= ⇥A=, and

2. ⇠ (=, G, H) = 1 if and only if (G, H) 2 X= ⇥ X= is a nontrivial question pair for ⌧=.

The Turing machines ⇠ and ⇡ are respectively called a question checker (or simply just a checker)

and decider for⌃. When = is written on the first input tape of ⇡ and⇠, the Turing machines discard

any string that comes after the ✓=’th bit in the second and third input tapes.

Verifiers play a crucial role in the compression theorems of this paper and [14], as they allow

for an effective method (“effective” in the computability sense) for encoding infinite sequences of

nonlocal games.

Remark 2. Although we have defined the games in the sequence ⌃ corresponding to a verifier

� to have questions and answers consisting of binary strings, we often treat the questions and
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answers as sets with more structure, such as tuples. There, we implicitly assume an efficiently

computable representation of set elements as binary strings is fixed.

We note that the Turing machine ⇡ in the definition of verifier � for an infinite sequence

⌃ = (⌧=)=2N of games already implicitly specifies the set of nontrivial questions for each ⌧=. For

our compression procedure, however, it will be necessary to be able to quickly compute whether a

question pair is nontrivial, and having a separate Turing machine⇠ for this is helpful for separately

keeping track of the decision procedure complexity versus the complexity of deciding the set of

nontrivial questions.

2.2.5 Asymptotics and approximation bounds

We end the preliminaries section with a short discussion of asymptotics in the analyses of the

Rigidity, Question Reduction and Answer Reduction sections. The bounds and approximations

in this paper are functions of two quantities: one is the game index =, which indicates the =-th

element of an infinite sequence ⌃ = (⌧=)=2N of games; we take = to go to infinity and use = to

measure sizes of question/answer alphabets, as well as the time complexity of the deciders. The

other quantity is Y where 1 � Y is a lower bound on the synchronous quantum or synchronous

commuting operator value of a nonlocal game ⌧ under consideration. We treat Y as a quantity that

goes to 0.

All of our approximations in this paper will generally depend on both = and Y. From the

assumption that the value of the game is at least 1 � Y we will derive consequences for a pair of

measurements {"0}, {#0}. For example we may prove that "0 ⇡X(=,Y) #0 where X : N⇥R+ ! R+

is any function that is continuous in the second argument and is such that X(=, 0) = 0 for all =. We

call such functions proper error functions. We usually let the dependence on = to be implicit and
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simply write X(Y) for proper error functions.

Every instance of X in this paper should be understood as a function that is different from all the

previous instances of X except for the aforementioned two properties. For example if "0 ⇡X(Y) #0

and #0 ⇡X(Y) %0 by the triangle inequality we have

’
0

k"0 � %0k2  2

’
0

k"0 � #0k2 + 2

’
0

k#0 � %0k2

so we can write "0 ⇡X(Y) %0; every occurrence of X(Y) in these three approximations can be a

different proper error function.

As such in this paper we usually do not keep track of the specific approximation bounds. For

POVMs {"0} and {#0} we will often write "0 ⇡ #0 to denote "0 ⇡X(Y) #0 for some proper

error function X(Y). We also use the notation " ⇡ # , for any two operators " , # , to indicate that

k" � # kg ! 0 as Y ! 0. Similarly we may write g(") ⇡ g(#) to indicate that g(" � #) ! 0

as Y ! 0. We recommend reading the proof of Theorem 2.21 carefully to get used to these

conventions. The proof contains techniques that are used over and over in this paper.

Averaging argument. A simple but prevailing idea in many of the proofs in this paper is the

observation that, if a strategy in a game ⌧ has a value at least 1 � Y, then the winning probability

conditioned on any event that has a nonzero probability is at least 1� X(Y) for some error function

X that has some dependence on the probability of the conditioning event (we usually ignore this

dependence). So for example since the probability distribution on questions is uniform in all our

games, the event that players receive a fixed question pair (G, H) has probability 1/|X|2 where X

is the question set of the game. Then the probability of winning conditioned on players receiving
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question pair (G, H) is at least 1 � |X|2Y = 1 � X(Y). We usually abbreviate this by simply saying

“by an averaging argument, the probability of winning conditioned on players receiving question

pair (G, H) is 1 � X(Y).” Since we are working in the gapless regime, we do not need to keep track

of the dependence of X on |X| which allows us to just simply write X(Y).

The implication of cross-checks between nontrivial question pairs. We explain another proof

technique that appears repeatedly in the following sections of the paper. Suppose {@, A, @A} 2 X

are three questions in a game ⌧ (@A is a single question different from @ and A). The answer

to questions @, A, @A are expected to be in three sets A,B,A ⇥ B, respectively. Furthermore

suppose that the winning condition dictates that ⇡ (@, @A, 0, (00, 10)) = 1 iff 0 = 0
0 and that

⇡ (A, @A, 1, (00, 10)) = 1 iff 1 = 1
0. Clearly (@, @A) and (A, @A) are nontrivial question pairs in

this game.

Now one very useful observation is that if (g, {#G}G2X) is any strategy that wins this game with

probability at least 1 � Y, then it must be that

#
@

0
#
A

1
⇡
X(Y) #

A

1
#
@

0
,

or in other words the measurements #@ and #A approximately commute. To see this, first note

that by an averaging argument the probability of winning conditioned on receiving question pair

(@, @A) is 1 � X(Y). This fact can be stated as follows

1 � X(Y) 
’

02A,12B
g(#@

0
#
@A

0,1
) =

’
02A

g(#@
0
#
@A

0,·)
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where #@A
0,· is the marginal measurement projection

Õ
12B #

@A

0,1
. We can rewrite this as

#
@

0
'
X(Y) #

@A

0,· .

By an application of Theorem 2.13 we get

#
@

0
⇡
X(Y) #

@A

0,· .

By the symmetry we similarly get

#
A

1
⇡
X(Y) #

@A

·,1 .

where #@A·,1 is the marginal measurement projection
Õ
02A #

@A

0,1
.

Using Theorem 2.8, we get

#
@

0
#
A

1
⇡
X(Y) #

@A

0,·#
A

1
.

With another application of Theorem 2.8, we get

#
@A

0,·#
A

1
⇡
X(Y) #

@A

0,·#
@A

·,1 .

By the triangle inequality we can combine these to get

#
@

0
#
A

1
⇡
X(Y) #

@A

0,·#
@A

·,1 .
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Since projection operators belonging to the same projective measurement commute, we have

#
@A

0,·#
@A

·,1 = #
@A

·,1#
@A

0,· .

Finally by two more applications of Theorem 2.8 and the triangle inequality, we get the desired

result

#
@

0
#
A

1
⇡
X(Y) #

A

1
#
@

0
.

2.3 Nonlocal game rigidity

A fundamental component of compression theorems are the use of nonlocal games with specific

rigidity properties. Informally speaking, a nonlocal game ⌧ is rigid if the state and measurement

operators of an optimal strategy for ⌧ must satisfy very rigid constraints – even to the point of

being uniquely specified up to conjugation by isometries.

The most well-known example of a rigid game is the CHSH game [64], named after physicists

Clauser, Horne, Shimony and Holt. In this game Alice and Bob receive questions G, H 2 {0, 1} and

answer with bits 0, 1 2 {0, 1}. They win if and only if 0 + 1 = GH mod 2.

It is well-known that the CHSH game satisfies l@ (⇠�(�) = l2> (⇠�(�) = 1

2
+ 1

2

p
2
, and the

optimum is achieved by a simple two-dimensional strategy (that we call the canonical strategy)

where the players share the entangled state |EPRi = ( |0i ⌦ |0i + |1i ⌦ |1i)/
p

2, and Alice and

Bob’s measurement operators are defined to be the following: for all 0, 1 2 {0, 1},

1. �0

0
is the projection onto the eigenspace of / =

©≠≠≠
´
1 0

0 �1

™ÆÆÆ
¨

with eigenvalue (�1)0.
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2. �1

0
is the projection onto the eigenspace of - =

©≠≠≠
´
0 1

1 0

™ÆÆÆ
¨

with eigenvalue (�1)0.

3. ⌫0

1
is the projection onto the eigenspace of (/ + -)/

p
2 with eigenvalue (�1)1.

4. ⌫1

1
is the projection onto the eigenspace of (/ � -)/

p
2 with eigenvalue (�1)1.

(The CHSH game is not a synchronous game and optimal strategies for CHSH are not synchronous,

so in general Alice and Bob will have different measurement operators for each question).

It turns out that any finite-dimensional strategy achieving the optimum value for CHSH must

be equivalent to the canonical strategy just described: if the state |ki belongs to H� ⌦ H⌫ for

finite-dimensional Hilbert spaces H�,H⌫,10 then there exist isometries +�,+⌫ acting on H�,H⌫

respectively such that (+� ⌦ +⌫) |ki = |⇢%'i ⌦ |qi for some auxiliary state |qi, and furthermore

under the isometries the players’ measurement operators are equal to the canonical measurements

described above. Since we can only characterize quantum strategies up to local isometries (i.e.

applying local isometries to a strategy cannot change its success probability), this shows that the

canonical strategy is essentially the unique strategy achieving the optimum winning probability for

CHSH.

Furthermore, the rigidity of the CHSH game is robust: strategies that are approximately optimal

for CHSH must be approximately equivalent, up to local isometries, to the canonical strategy. The

rigidity of the CHSH game has been studied extensively in quantum information theory and has

found applications to quantum cryptography and quantum complexity theory; see [65] for a survey

of self-testing and its applications.
10A standard result in the theory of nonlocal games is that any finite-dimensional strategy can be expressed as a

tensor-product strategy [41, Theorem 1].

96



In this paper, we propose a more abstract formulation of nonlocal game rigidity: we say that

a game ⌧ is rigid if there is a set of algebraic relations that are (approximately) satisfied by the

measurement operators in any strategy ✓ for ⌧ that (approximately) attains the optimal value. We

no longer worry about characterizing the state vector or finding a concrete representation of the

measurement operators as matrices.

For example, the rigidity of the CHSH game can be formulated as follows: any quantum

strategy where their shared state is |ki and Alice’s and Bob’s projective measurements are {�G
0
}

and {⌫H
1
} respectively that achieves value l2> (⇠�(�) in the CHSH game must generate anti-

commuting observables: defining the self-adjoint unitary operators*0 = �0

0
��0

1
and*1 = �1

0
��1

1
,

we must have that*0
*

1 |ki = �*1
*

0 |ki; the same holds with Bob’s operators. Furthermore, this

anti-commutation relation establishes that the Hilbert space must have dimension at least 2.

Establishing anti-commutation relations between the observables induced by an optimal strat-

egy is usually the first step in “traditional” proofs of CHSH rigidity; this step is key to proving that

the state and measurements are isometric to |⇢%'i and the Pauli / and - observables, respec-

tively. In this paper, however, we solely focus on the algebraic relations between the measurement

operators – these are the only properties that are needed for our applications. This allows us to

shortcut some of the complexity of typical arguments for nonlocal game rigidity.

Aside from providing simplifications, we believe that this algebraic perspective on rigidity will

be beneficial for studying nonlocal games and their connections to subjects such as approximate

representation theory and operator algebras.
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2.3.1 The Magic Square game

We illustrate how rigidity results can be formulated in the synchronous games framework using

the Mermin-Peres Magic Square game (often called Magic Square game for short) [18, 19, 66].

Rigidity of Magic Square is first proved in [67]. The Magic Square is a game where the players’

goal is to convince the verifier that they can assign values to the cells of a 3 ⇥ 3 grid such that the

sum of cells within a row or column is even, except in the last column, where the sum should be

odd. Of course, it is impossible to deterministically assign values satisfying these constraints, but

when the players use a quantum strategy it appears as if they are performing the impossible.

We can view the Magic Square game as corresponding to a system of linear equations over Z2:

let B11, . . . , B33 denote variables for the nine squares of the 3 ⇥ 3 grid, as depicted below:

B11 B12 B13

B21 B22 B23

B31 B32 B33

There are three constraints for the rows and three constraints for the columns:

B11 + B12 + B13 = 0 B11 + B21 + B31 = 0

B21 + B22 + B23 = 0 B12 + B22 + B32 = 0

B31 + B32 + B33 = 0 B13 + B23 + B33 = 1

In the standard formulation of the Magic Square game, one player is chosen to be a constraint

player, meaning that they receive a random equation 4 = {B81 91 , B82 92 , B83 93} from this linear system.

The other player is chosen to be the variable player, meaning that they receive a random variable
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B8 9 from the equation 4. The constraint player is supposed to respond with an assignment from

{0, 1} to each of the variables in their received equation, and the variable player is supposed to

respond with an assignment to their variable. The players win if the constraint players’ assignment

satisfies the given equation and if the variable player’s assignment is consistent with the constraint

player’s answers (i.e. the constraint player’s assignment for the other player’s received variable

must match the variable player’s response).

We only deal with games with uniform question distributions in this paper, so the variant of the

Magic Square game (which we abbreviate as MS) that we consider is where the questions to Alice

and Bob are uniformly and independently chosen from XMS = Xeqs [ Xvars where

Xeqs = {A1, A2, A3, 21, 22, 23},

Xvars = {B11, B12, B13, B21, B22, B23, B31, B32, B33}.

Here A8 (resp. 2 9 ) stands for the equation associated with the 8th row {B81, B82, B83} (resp. 9 th column

{B1 9 , B2 9 , B3 9 }). For every constraint 4 in the Magic Square linear system, let A4 denote the set of

functions 54 that map variables in 4 to {0, 1}. The answer set is AMS = Aeqs [ Avars where

Aeqs is the the union of A4 over all constraints 4, and Avars = {0, 1}. The decision procedure

⇡MS (G, H, 0, 1) for the Magic Square game is described by the following table: if (G, H) (resp.

(H, G), as the game is symmetric) is one of the nontrivial question pairs listed, then the players win

if and only if the winning condition for the answers (0, 1) (resp. (1, 0)) is satisfied. Otherwise, if

the question pair is nontrivial, the players automatically win.
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Nontrivial Question Pair (G, H) Winning Condition on Answers (0, 1)

G = H 0 = 1

G 2 Xeqs, H 2 Xvars and H is a variable in equation G 0 2 Aeqs satisfies equation G and 0(H) = 1

Table 2.1: The nontrivial question pairs and winning conditions for the Magic Square game.

We now define a value-1 synchronous strategy for the Magic Square game. Let H be a Hilbert

space and for each variable B8 9 let $8 9 denote a self-adjoint unitary operator (called an observable)

acting on H . Suppose that by arranging them into a 3⇥3 grid, the observables satisfy the following

algebraic relations:

1. (R1) The product of observables in a row or column multiply to 1, except in the last column,

where they multiply to �1.

2. (R2) Two observables in the same row or column commute with each other;

3. (R3) Two observables not in the same row or column anti-commute with each other.

First, we note that it is possible to find such a set of observables satisfying these algebraic relations

(see Figure 2.2 for an example of unitary operators acting on C2 ⌦ C2).

/ ⌦ 1 1 ⌦ / / ⌦ /

1 ⌦ - - ⌦ 1 - ⌦ -

/ ⌦ - - ⌦ / -/ ⌦ /-

Figure 2.2: An example of optimal observables for the Magic Square game, where the - and / operators
are the same as in the canonical CHSH strategy.
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Second, we note that relation R3 is actually a consequence of relations R1 and R2. For example

to obtain $11
$

22 = �$22
$

11 one could repeatedly apply R1 and R2 in the following order

($11
$

22)2 = ($12
$

13) ($23
$

21) ($21
$

31) ($32
$

12)

= $12($13
$

23) ($21
$

21) ($31
$

32)$12

= �$12
$

33
$

33
$

12 = �1. (2.3.1)

However we include R3 because the anti-commutation relation turns out to be the most important

one in our applications of rigidity.

Given a set O = {$8 9 } of observables satisfying relations R1, R2, and R3, we can define

the synchronous strategy ✓ = (g, {"G}) where g is a tracial state on the von Neumann algebra

generated by the observables O. For a variable question B8 9 , define the measurement operator

"

B8 9

1
to be the projection onto the eigenspace of $8 9 with eigenvalue (�1)1. To aid notation we

abbreviate "B8 9

1
as "8 9

1
. The operator "4

0
corresponding to a constraint question 4 2 Xeqs is the

product

÷
B8 924

"
8 9

0(B8 9 ) (2.3.2)

where the product is over variables B8 9 occurring in equation 4, and 0 is an assignment to variables
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in 4. Notice that because of relation R2, if B81 91 , B82 92 2 4 then

"
81 91

11

"
82 92

12

= 1/4(1 + (�1)11
$
81 91) (1 + (�1)12

$
82 92)

= 1/4(1 + (�1)12
$
82 92) (1 + (�1)11

$
81 91)

= "82 92

12

"
81 91

11

for every 11, 12 2 {0, 1}. So the order of the product in Equation (2.3.2) doesn’t matter, and thus

"
4

0
is also a projection.

It is easy to verify that this strategy for the Magic Square game attains winning probability 1;

this relies on the relations R1 and R2. Let us verify this in a few simple steps. Conditioned on

players receiving a trivial question pair, the players winning probability is 1 (as in this case players

win regardless of their answers). Conditioned on receiving the same question, the players respond

with the same answer with probability 1 because ✓ is a projective strategy. Indeed conditioned on

receiving question pair (B8 9 , B8 9 ), the probability of winning is

g("8 9

0
"
8 9

0
) + g("8 9

1
"
8 9

1
) = g("8 9

0
+ "8 9

1
) = g(1) = 1.

Similarly conditioned on question pair (4, 4) 2 Xeqs ⇥ Xeqs, the probability of winning is

’
02A4

g("4

0
"
4

0
) =

’
02A4

g("4

0
) = g(1) = 1.

Finally, conditioned on receiving question pair (A8, B8 9 ), the probability that the constraint player’s
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assignment for B8 9 matches the variable player’s answer to B8 9 is

’
02AA

8

g("A8

0
"
8 9

0(B8 9 )) =
’

12Avars

’
02AA

8

0(B8 9 )=1

g("A8

0
"
8 9

1
)

=
’

12Avars

g("8 9

1
"
8 9

1
) =

’
12Avars

g("8 9

1
) = g(1) = 1

and the probability that the constraint player’s assignment satisfies equation A8 is

’
02AA

8

0(B81)+0(B82)+0(B83)=0

g("A8

0
) �

’
02AA

8

(�1)0(B81)+0(B82)+0(B83)g("A8

0
)

=
’
02AA

8

(�1)0(B81)+0(B82)+0(B83)g("81

0(B81) "
82

0(B82) "
83

0(B83))

= g($81$82$83) = g(1) = 1.

A similar calculation holds for question pairs (2 9 , B8 9 ). Since conditioned on any question pair

the winning probability is 1, we conclude that l(MS,✓) = 1. It should also be clear that this

strategy is oracularizable, meaning that measurements corresponding to nontrivial question pairs

commute. Finally, letting$8 9 be the Pauli observables in Figure 2.2, we obtain a finite dimensional

oracularizable perfect synchronous strategy for the Magic Square game defined over the Hilbert

space C4.

We now establish the rigidity of the Magic Square game. Let ✓ = (g, {"G}) denote a syn-

chronous strategy for the Magic Square game. Each {"8 9

1
}12AMS is a projective measurement with

outcomes 1 2 AMS. Without loss of generality, we assume that the measurements corresponding
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to variable questions B8 9 only produce either 0 or 1 as answers, i.e.,

"
8 9

0
+ "8 9

1
= 1 . (2.3.3)

This is because for variable questions we can always define "8 9

1
to be the orthogonal projection

1�"8 9

0
, and this cannot decrease the winning probability. Similarly, without loss of generality, we

assume that the projective measurement {"4

0
}02AMS corresponding to constraint question 4 only

produces assignments in A4, that is
Õ
02A4

"
4

0
= 1.

For every variable B8 9 2 Xvars, define the observable

$
8 9 = "8 9

0
� "8 9

1
.

Note that $8 9 is a self-adjoint unitary operator (because of the assumption in eq. (2.3.3)) and that

"
8 9

1
is a projection onto an eigenspace of $8 9 .

The rigidity of the Magic Square game is expressed in the following way: if ✓ is an (approx-

imately) optimal strategy for the Magic Square game, then the observables must (approximately)

satisfy the algebraic relations R1, R2, and R3.

Theorem 2.21 (Rigidity of Magic Square). Let ✓ = (g, {"G}) be a synchronous strategy such that

l(MS,✓) � 1 � Y. Let {$8 9 } denote the observables associated to the strategy. Then

1. (R1) The product of observables in a row or column approximately multiply to 1, except in
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the last column, where they approximately multiply to �1:

$
81
$
82
$
83 ⇡

X(Y) 1 for 8 = 1, 2, 3,

$
1 9
$

2 9
$

3 9 ⇡
X(Y) 1 for 9 = 1, 2,

$
13
$

23
$

33 ⇡
X(Y) �1 .

2. (R2) Two observables in the same row or column approximately commute with each other,

that is for all 8, 9 , : 2 [3]

$
8 9

$
8: ⇡

X(Y) $
8:

$
8 9

,

$
98

$
:8 ⇡

X(Y) $
:8

$
98

.

3. (R3) Two observables not in the same row or column anti-commute with each other, so for

example

$
11
$

22 ⇡
X(Y) �$22

$
11

,$
12
$

21 ⇡
X(Y) �$21

$
12

,

In all of these approximations X is some proper error function such that X(Y)  32|XMS |
p
Y.

Proof. We saw earlier that R3 is implied by R1 and R2. This is also the main idea behind the

proof here. We first show that {$8 9 } approximately satisfies R1 and R2, then we use a derivation

similar to (2.3.1), to conclude that R3 is approximately satisfied.

We can deduce a number of consistency conditions from the fact that the strategy ✓ succeeds

with probability at least 1 � Y. First, by a simple averaging argument, since every question pair

(G, H) 2 XMS ⇥ XMS is sampled uniformly at random, the winning probability conditioned on
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players receiving any fixed question pair (G, H) is at least 1 � |XMS |2.

As a notation aid, let '8
0
= "

A8

0
denote a row measurement operator and ⇠ 9

0
= "

2 9

0
denote a

column measurement operator. By the winning conditions in Table 2.1, the constraint and variable

players’ answers must be consistent with high probability. In other words
Õ
02AA

8

TR

⇣
'
8

0
"
8 9

0(B8 9 )

⌘

is at least as large as the probability of winning conditioned on players receiving question pair

(A8, B8 9 ) for every 8, 9 2 [3]. So from our remark earlier, we have

’
02AA

8

TR

⇣
'
8

0
"
8 9

0(B8 9 )

⌘
� 1 � |XMS |2Y . (2.3.4)

For every row measurement operator '8
0

we define marginal projection operators: for 9 2 [3] and

1 2 {0, 1} define

'
8 9

1
=

’
02AA

8
: 0(B8 9 )=1

'
8

0

where the summation is over assignments 0 that assigns value 1 to variable B8 9 . This is a projection

and notice that for all assignments 0 to variables in A8, we have

'
8

0
= '81

0(B81) · '
82

0(B82) · '
83

0(B83) .

It is also clear that {'8 9
1
}
12{0,1} forms a projective measurement. We can similarly define, for all

columns 9 and variables B8 9 , projective measurement {⇠ 98

1
} consisting of operators

⇠
98

1
=

’
02A2

9
: 0(B8 9 )=1

⇠
9

0
.

106



We can rewrite (2.3.4) in terms of projective measurements {'8 9
1
}
12{0,1} as follows

1 � |XMS |2Y 
’
02AA

8

TR

⇣
'
8

0
"
8 9

0(B8 9 )

⌘
=

’
12Avars

’
02AA

8
:

0(B8 9 )=1

TR

⇣
'
8

0
"
8 9

1

⌘
=

’
12Avars

TR

⇣
'
8 9

1
"
8 9

1

⌘
.

Using the notation for consistency between measurements, we can equivalently express this as

'
8 9

1
'|XMS |2Y "

8 9

1
,

where the answer set is Avars = {0, 1}. By Theorem 2.13, we convert consistency to closeness to

obtain

'
8 9

1
⇡|XMS |

p
2Y
"
8 9

1
,

and with a similar argument for columns we get that

⇠
98

1
⇡|XMS |

p
2Y
"
8 9

1
.

At this point it will be more convenient for us to work with observables, rather than projection

operators. We have already defined observable$8 9 for each variable B8 9 ; we now define observables

corresponding to the (marginal) constraint operators: for all 8, 9 2 [3], define

'
8 9 = '8 9

0
� '8 9

1
and ⇠

98 = ⇠ 98

0
� ⇠ 98

1
.

The closeness between constraints and variable projective measurements can be expressed also in
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terms of observables using the triangle inequality

k$8 9 � '8 9 k2
g
 2k"8 9

0
� '8 9

0
k2
g
+ 2k"8 9

1
� '8 9

1
k2
g
 4|XMS |2Y.

The same holds for columns, therefore overall we have proved that

$
8 9 ⇡

2|XMS |
p
Y
'
8 9

, (2.3.5)

$
8 9 ⇡

2|XMS |
p
Y
⇠
98

. (2.3.6)

Now using these relations, we can prove that variable observables in the same row or column

approximately commute. This follows from a few simple steps. First, by the triangle inequality,

for every 8, 9 , : 2 [3] we can write

k$8 9 $8: �$8: $8 9 k2
g
 2k$8 9 $8: � '8 9 '8: k2

g
+ 2k'8 9 '8: � '8: '8 9 k2

g
+ 2k'8: '8 9 �$8: $8 9 k2

g

= 2k$8 9 $8: � '8 9 '8: k2
g
+ 2k'8: '8 9 �$8: $8 9 k2

g
. (2.3.7)

where we used the equality '
8 9
'
8: = '

8:
'
8 9 which follows from the fact that projections '8 9

1

and '
8:

2
are marginals of the same projective measurement {'8

0
}02AA

8

and projections belong-

ing to the same projective measurement commute. By Theorem 2.8, from (2.3.5), we get that

$
8 9
$
8: ⇡

2|XMS |
p
Y
'
8 9
$
8: . Again by Theorem 2.8, from (2.3.5), we get that '8 9$8: ⇡

2|XMS |
p
Y

'
8 9
'
8: . So by triangle inequality we have

k$8 9 $8: � '8 9 '8: k2
g
 2k$8 9$8: � '8 9$8: k2

g
+ 2k$8 9 '8: � '8 9 '8: k2

g
 16|XMS |2Y.
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This is true for all 8, 9 , : 2 [3], so in particular it also holds that

k'8: '8 9 �$8: $8 9 k2
g
 16|XMS |2Y.

Now plugging these in (2.3.7) we get that

k$8 9 $8: �$8: $8 9 k2
g
 32|XMS |2Y.

An identical argument can be applied to columns, so overall we proved

$
8 9

$
8: ⇡

4|XMS |
p

2Y
$
8:

$
8 9

, (2.3.8)

$
98

$
:8 ⇡

4|XMS |
p

2Y
$
:8

$
98

, (2.3.9)

for every 8, 9 , : 2 [3].

As mentioned in Section 2.2.5, in this paper we do not need to keep track of the specific

approximation bounds. As such, instead of carrying around subscripts like 4|XMS |
p

2Y in our

approximations, we opt to instead write $8 9 ⇡
X(Y) '

8 9 where X is some error function such that

X(Y) ! 0 as Y ! 0. For example in the rest of this paper the argument above will be abbreviated

as follows: From $
8 9 ⇡

X(Y) '
8 9 for all 8, 9 2 [3] and repeated applications of Theorem 2.8, we

obtain

$
8 9

$
8: ⇡

X(Y) '
8 9

'
8: = '8: '8 9 ⇡

X(Y) $
8:

$
8 9

,

so by the triangle inequality

$
8 9

$
8: ⇡

X(Y) $
8:

$
8 9

,
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where X(Y) are proper error functions. It is only in this proof that, for the benefit of the reader who

sees these approximations for the first time, we tried to give the arguments in full details and kept

track of all the error functions.

So far we obtained consequences of the fact that in a strategy with large winning probability the

constraint and variable players’ answers are consistent with high probability. There are some other

relations that must hold in any approximately optimal strategy. For instance, with high probability,

the measurement outcome of a constraint measurement {"4

0
}02A4

must be a satisfying assignment

for the constraint 4. Let us make this more precise. The probability of winning conditioned on

players receiving question pair (A8, B8 9 ) is at least 1� |XMS |2Y. By winning conditions in Table 2.1,

if players win on question pair (A8, B8 9 ), then the assignment by the player receiving question A8

must satisfy constraint A8. So we can write

’
02AA

8

0(B81)+0(B82)+0(B83))=0

TR
�
'
8

0

�
� 1 � |XMS |2Y.

Now from the fact that {'8
0
}02AA

8

is a projective measurement, we get that

’
02AA

8

(�1)0(B81)+0(B82)+0(B83)TR
�
'
8

0

�
� 1 � 2|XMS |2Y,

and in terms of observables this can be equivalently written as

TR

⇣
'
81
'
82
'
83

⌘
� 1 � 2|XMS |2Y .
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By Theorem 2.9, we get that

'
81
'
82
'
83 ⇡

2|XMS |
p
Y

1 for 8 = 1, 2, 3 . (2.3.10)

Doing the same for columns we get

⇠
91
⇠
92
⇠
93 ⇡

2|XMS |
p
Y

1 for 9 = 1, 2

and

⇠
31
⇠

32
⇠

33 ⇡
2|XMS |

p
Y
�1

Now by (2.3.5) and (2.3.10), and repeated applications of Theorem 2.8 and the triangle inequality,

for every 8 2 [3], we obtain

k$81$82$83k2
g
 2k$81$82$83 � '81$82$83k2

g
+ 2k'81$82$83 � '81 '82$83k2

g

+ 2k'81 '82$83 � '81 '82 '83k2
g
+ 2k'81 '82 '83 � 1k2

g

 32|XMS |2Y.

Therefore we have

$
81
$
82
$
83 ⇡

4|XMS |
p

2Y
1 for 8 = 1, 2, 3, (2.3.11)
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and following the same argument for columns

$
1 9
$

2 9
$

3 9 ⇡
4|XMS |

p
2Y

1 for 9 = 1, 2, (2.3.12)

$
13
$

23
$

33 ⇡
4|XMS |

p
2Y
�1 . (2.3.13)

Finally to prove the approximate anticommutation $11
$

22 ⇡ �$22
$

11, we follow the idea in

the derivation 2.3.1: We start with ($11
$

22)2 and step by step, using relations (2.3.11)-(2.3.13),

substitute $11 and $22 by unitaries that are nearby. By repeated applications of triangle inequality

and Theorem 2.8 and the approximate relations we established so far, we can write

($11
$

22)2 ⇡
16|XMS |

p
Y
($12

$
13) ($23

$
21) ($21

$
31) ($32

$
12)

= $12($13
$

23) ($21
$

21) ($31
$

32)$12

= $12($13
$

23) ($31
$

32)$12

⇡
8|XMS |

p
2Y
�$12

$
33
$

33
$

12

= �1,

So altogether, with another application of triangle inequality, we obtain

k ($11
$

22)2 + 1kg  32|XMS |
p
Y.

Now since $11
$

22 is a unitary and the g-norm is unitarily invariant, we conclude that

k$11
$

22 +$22
$

11kg  32|XMS |
p
Y.
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By symmetry, an almost identical argument can be applied to prove anticommutation relations for

all other pairs of observables not in the same row or column. É

As mentioned, the rigidity of the Magic Square and CHSH games are important stepping stones

for a number of results in quantum complexity theory and quantum cryptography. A crucial com-

ponent of obtaining strong lower bounds on the complexity of approximating the value of nonlocal

games has been through developing nonlocal games with highly efficient rigidity properties.

We measure efficiency via the tradeoff between the complexity of the game versus the com-

plexity of the algebraic relations that (approximately) optimal strategies must satisfy. For example,

the Magic Square game has |XMS |2 = 15
2 question pairs and a similar number of answer pairs, and

(approximately) optimal strategies must give rise to two pairs of (approximately) anti-commuting

observables {$11
,$

22} and {$21
,$

12}, and furthermore these pairs must be independent in the

sense that they (approximately) commute with each other. This implies that when the probability

of winning is sufficiently close to 1, the dimension of the Hilbert space must be at least 4. We say

that the Magic Square game certifies the existence of two independent anti-commuting observables

and certifies a Hilbert space of dimension at least 4. This is a consequence of the following general

statement:

Proposition 2.22. Let � denote a von Neumann algebra on a separable Hilbert space H with a

tracial state g, and let �(1)
, . . . , �

(=)
, ⌫

(1)
, . . . , ⌫

(=) 2 � denote self-adjoint unitary operators (i.e.

observables). Suppose for some Y � 0 the following approximate commutation and anticommuta-
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tion relations hold:

8 8, �
(8)
⌫
(8) ⇡Y �⌫(8)

�
(8)

8 8 < 9 , �
(8)
�
( 9) ⇡Y �( 9)

�
(8)

, ⌫
(8)
⌫
( 9) ⇡Y ⌫( 9)

⌫
(8)

, �
(8)
⌫
( 9) ⇡Y ⌫( 9)

�
(8)

.

Then, for all sufficiently small Y, it holds that dimH � (1 � X(Y))2= where X(Y) is some proper

error function.

Proof. There is nothing to prove when H is infinite dimensional. So assume that H is finite

dimensional. By Theorem 4.4.1 in [68], every finite dimensional von Neumann algebra is a direct

sum of ⌫(H 8) where H 8 are finite dimensional Hilbert spaces. So without loss of generality we

may assume � = ⌫(H) and that g(·) = tr(·)/dimH is the dimension-normalized trace.

Let ⇧ (8)
1

be the projection onto (�1)1-eigenspace of �(8) . For every B 2 {0, 1}= let

"B
:=

⇣ =÷
8=1

⇧ (8)
B8

⌘ ⇣ =÷
8=1

⇧ (8)
B8

⌘⇤
.

These operators are clearly positive semidefinite and a simple inductive argument shows that

Õ
B2{0,1}= "B = 1. Therefore {"B}B2{0,1}= is a POVM.

From approximate commutation relations between �(8)s we get that any pair ⇧ (8)
0

and ⇧ ( 9)
1

must

approximately commute. Therefore by repeated applications of Theorem 2.8, we get that

"
2

B
⇡
X(Y) "B .

By Theorem 2.8 again, we obtain that g("B � "2

B
)  X(Y) for every B. So by Theorem 2.17, there
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exists a projective measurement {%B}B2{0,1}= ⇢ � such that %B ⇡X(Y) "B.

By approximate anticommutation, we get ⌫(8)
�
(8)
⌫
(8) ⇡

X(Y) ��(8) . We can express this in

terms of projective measurement {⇧ (8)
0
,⇧ (8)

1
}

⌫
(8) ⇧ (8)

0
⌫
(8) � ⌫(8) ⇧ (8)

1
⌫
(8) ⇡

X(Y) ⇧
(8)
1
� ⇧ (8)

0
.

Using the relation ⇧ (8)
0

+ ⇧ (8)
1

= 1, we conclude that

⌫
(8) ⇧ (8)

0
⌫
(8) ⇡

X(Y) ⇧
(8)
1
. (2.3.14)

Now if we define unitary operators*B,C :=
Œ
=

8=1
(⌫(8))B8+C8 , it is straightforward to show that

*B,C "B *
⇤
B,C
⇡
X(Y) "C

for every B, C 2 {0, 1}= using (2.3.14) and approximate commutation and anticommutations be-

tween � and ⌫ operators. This immediately implies that

g("C) ⇡X(Y) g(*B,C "B *
⇤
B,C
) = g("B).

Now since projections {%B} are close to operators {"B} we also have g(%B) ⇡X(Y) g(%C) for every

B, C.

From g(Õ
B
%B) = g(1) = 1 and the fact that g(%B) ⇡ g(%C) for every B, C 2 {0, 1}=, we get that
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g(%B) ⇡X(Y) 2
�=. In other words we have

(1 � X(Y))2�=  g(%B)  (1 + X(Y))2�=

for every B. For all Y sufficiently small, we have X(Y) < 1, and thus g(%B) > 0. Since %B is a

projection and it is nonzero it must be that tr(%B) � 1 so g(%B) = tr(%B)/dimH � 1/dimH . We

can write

1/dimH  g(%B)  (1 + X(Y))2�=

from which we conclude that

dimH � 2
=

1 + X(Y) � (1 � X(Y))2=.

É

It is possible to construct games that certify a larger Hilbert space. An example is the =-fold

parallel repetition of the Magic Square game, which is a nonlocal game where the verifier plays =

independent instances of the Magic Square game simultaneously with the two players. This game

is also rigid, and it certifies 2= pairs of independent anti-commuting observables and consequently,

by the proposition we just proved, certifies a Hilbert space of dimension 2
2=. However the com-

plexity of the game also scales commensurately with the dimension: the number of questions and

answers grows as 2
$ (=) .

Are there games that certify a 3-dimensional Hilbert space using much fewer than 3 ques-

tions/answer pairs? Chao, Reichardt, Sutherland and Vidick [69] and Natarajan and Vidick [50]

showed that there exist families of games {⌧=} where the =-th game ⌧= certifies a 2
=-dimensional
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space using poly(=) question/answer pairs. The rigidity result of [50] is also highly robust, in the

sense that strategies for ⌧= that succeed with probability 1� Y must be X(Y)-close to satisfying the

target algebraic relations, for some function X(Y) that has a mild (e.g., logarithmic) dependence on

=. The existence of games with efficient and robust rigidity properties is a key component of the

gap-preserving compression theorem of [14].11

For our gapless compression result, we only need games with efficient rigidity properties (i.e.,

small game certifying a large Hilbert space), not necessarily highly robust ones. In this paper

we use a family of games that we call 2-out-of-= Magic Square, which is inspired by the family

of games introduced in [69], which we call 2-out-of-= CHSH. We describe the 2-out-of-= Magic

Square games next.

2.3.2 The 2-out-of-= Magic Square game

Fix an integer = > 0. The basic idea behind the 2-out-of-= Magic Square game, abbreviated

2-OF-=-MS, is that the players are asked to play = simultaneous instances of the Magic Square

game, but the verifier only asks the players for their responses for 2 instances. Define the question

set X2-OF-=-MS = {(8, 9) 2 [=]2
: 8 < 9} ⇥ X2

MS, and the answer set A2-OF-=-MS = A2

MS. The

decision predicate ⇡2-OF-=-MS (@, A, 0, 1) is specified as follows, via its nontrivial question pairs

and the corresponding winning conditions for the answers.

Nontrivial Question Pair (@, A) Winning Condition on Answers (0, 1)

@ = A 0 = 1

@ = (8, 9 , G8, G 9 ), A = (: , ✓, H: , H✓) ⇡MS (GF, HF, DF, EF) = 1 for all F 2 {8, 9} \ {: , ✓}

where {8, 9} \ {: , ✓} < ;, and for all F in the intersection, (GF, HF) is a nontrivial question pair for MS where 0 = (D8, D 9 ), 1 = (E: , E✓)

Table 2.2: The nontrivial question pairs and winning conditions for the 2-OF-=-MS.

11In fact, the result of [14] implies that one can construct games with< questions/answers that certify 3-dimensional
Hilbert spaces, and 3 can be an arbitrarily large (computable) function of <!
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In other words, each player gets asked to generate answers for two instances of the Magic

Square game, but do not know what instances the other player is asked about. If there is an

instance 8 that is asked to both players, then their questions and answers for instance 8 must satisfy

the Magic Square decision predicate.

It is easy to see that the 2-OF-=-MS has a perfect synchronous strategy: let ✓MS = (g, {"G}),

where g is a tracial state on some von Neumann algebra � on a Hilbert space H , denote the

perfect strategy for the Magic Square game described above. Then define the synchronous strategy

✓2-OF-=-MS = (g⌦=, {"8, 9 ,G,H}), where "8, 9 ,G,H = {"8, 9 ,G,H

0,1
}0,12AMS is the projective measurement

defined such that

"
8, 9 ,G,H

0,1
:= 1 ⌦ · · · ⌦ 1 ⌦ "G

0
⌦ 1 ⌦ · · · ⌦ 1 ⌦ "H

1
⌦ 1 ⌦ · · · ⌦ 1 2 �⌦=

in which "G

0
and "H

1
are acting on the 8th and 9 th copy of H , respectively. Intuitively if a player re-

ceives the question (8, 9 , G, H) they perform independent Magic Square measurements correspond-

ing to questions G and H on the 8-th and 9-th copy of H , respectively, and respond with their

measurement outcomes. Clearly, the players’ will win the instances that are shared between them.

The oracularizability of this strategy follows from the oracularizablity of the honest strategy of the

Magic Square game and the construction above: for example if (G8, H8) is a nontrivial question pair

in the Magic Square game, then measurements "8, 9 ,G8 ,G 9 and "8,: ,H8 ,H: commute for all 9 < : since

measurements "G8 and "H8 commute by the oracularizability of the honest Magic Square strategy

from the previous section.

The next lemma expresses the rigidity properties of the 2-OF-=-MS. Let {"8, 9 ,G,H

0,1
}0,12AMS

denote a measurement corresponding to a question (8, 9 , G, H) 2 X2-OF-=-MS. Define the marginal
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measurement operator

"
8,G

0
=

’
1

"
8,succ(8),G,G
0,1

where the sum is over answers 1 2 AMS and succ(8) =

8>>>>>><
>>>>>>:

8 + 1, 8 < =,

1, 8 = =.

Note that for all (8, G) 2 [=] ⇥ XMS, the set {"8,G

0
}02AMS forms a projective measurement. Just

like with strategies for the Magic Square game, when G is a variable question in the Magic Square

game (i.e. it is B23 for some 2, 3 2 [3]), we assume without loss of generality that

"
8,B23

0
+ "8,B23

1
= 1

for all 8 2 [=], 2, 3 2 [3]. For each variable B23 define the corresponding observable

$
8,2,3 = "8,B23

0
� "8,B23

1
.

Lemma 2.23 (Rigidity of the 2-OF-=-MS). Let ✓ = (g, {"G}) be a synchronous strategy such

that l(2-OF-=-MS,✓) � 1 � Y. For all 8 2 [=] define

�
(28�1) = $8,1,1 , ⌫(28�1) = $8,2,2 ,

�
(28) = $8,1,2 , ⌫(28) = $8,2,1 .
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Then

8 : 2 [2=], �
(:)
⌫
(:) ⇡X �⌫(:)

�
(:)

8 : , ; 2 [2=] and : < ;, �
(:)
�
(;) ⇡X �(;)

�
(:)

, ⌫
(:)
⌫
(;) ⇡X ⌫(;)

⌫
(:)

, �
(:)
⌫
(;) ⇡X ⌫(;)

�
(:)

where X(=, Y) = poly(=) · poly(Y) is a proper error function.

Proof. Fixing 8 2 [=] and G, H 2 XMS, the probability of winning the instance 8 Magic Square

game, conditioned on players receiving questions (8, succ(8), G, G) and (8, succ(8), H, H) is at least

1 � |X2-OF-=-MS |2Y, thus

’
0,1

g("8,G

0
"
8,H

1
)⇡MS (G, H, 0, 1) � 1 � |X2-OF-=-MS |2Y.

So conditioned on every question pair (G, H), the strategy (g, {"8,G}G2MS) wins in the Magic Square

game with probability at least

1 � |X2-OF-=-MS |2Y = 1 � poly(=, Y).

Therefore by Theorem 2.21, for every 8 2 [=], we have

�
(28�1)

⌫
(28�1) ⇡poly(=,Y) �⌫(28�1)

�
(28�1)

, �
(28)

⌫
(28) ⇡poly(=,Y) �⌫(28)

�
(28)

,

�
(28�1)

�
(28) ⇡poly(=,Y) �

(28)
�
(28�1)

, ⌫
(28�1)

⌫
(28) ⇡poly(=,Y) ⌫

(28)
⌫
(28�1)

,

�
(28�1)

⌫
(28) ⇡poly(=,Y) ⌫

(28)
�
(28�1)

, ⌫
(28�1)

�
(28) ⇡poly(=,Y) �

(28)
⌫
(28�1)

.
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It is only left to prove that when : , ; 2 [2=] and |: � ; | > 1, it holds that

�
(:)
�
(;) ⇡X �(;)

�
(:)

, ⌫
(:)
⌫
(;) ⇡X ⌫(;)

⌫
(:)

, �
(:)
⌫
(;) ⇡X ⌫(;)

�
(:)

.

We prove the stronger statement that "8,G

0
"

9 ,H

1
⇡X "

9 ,G

1
"
8,H

0
for all 8, 9 2 [=], 8 < 9 , G, H 2

XMS, 0, 1 2 AMS.

We give the proof for the case where 9 < succ(8) and 8 < succ( 9). The proof for the other

cases follow the same idea. The proof is based on the cross-check between nontrivial question

pair (8, succ(8), G, G) and (8, 9 , G, H) on one hand and the cross-check between nontrivial question

pair (8, 9 , G, H) and ( 9 , succ( 9), H, H) on the other hand. We derive consequences of the fact that,

conditioned on players receiving questions (8, succ(8), G, G) and (8, 9 , G, H), they win instance 8

of the Magic Square with high probability. Similarly we derive consequences of the fact that,

conditioned on players receiving questions ( 9 , succ( 9), H, H) and (8, 9 , G, H), they win instance 9

of Magic Square with high probability. The consequences we derive are then used to prove the

desired approximate commutation relations.

Recall that by the winning conditions of the Magic Square game, if players win (in the Magic

Square game) when receiving the same question, then they must have responded with the same

answer. This can be expressed as

’
02AMS

’
1,22AMS

g("8,succ(8),G,G
0,1

"
8, 9 ,G,H

0,2
) � 1 � |X2-OF-=-MS |2Y ,
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or in other words

’
02AMS

g("8,G

0

’
2

"
8, 9 ,G,H

0,2
) � 1 � |X2-OF-=-MS |2Y .

In terms of consistency relations this can be expressed as "8,G

0
'X

Õ
2
"
8, 9 ,G,H

0,2
.

Similarly we have

’
12AMS

’
2,32AMS

g(" 9 ,succ( 9),H,H
1,2

"
8, 9 ,G,H

3,1
) � 1 � |X2-OF-=-MS |2Y ,

or in other words

’
02AMS

g(" 9 ,H

1

’
3

"
8, 9 ,G,H

3,1
) � 1 � |X2-OF-=-MS |2Y .

In terms of consistency relations this can be expressed as " 9 ,H

1
'X

Õ
2
"
8, 9 ,G,H

2,1
.

Using Theorem 2.13 we turn the consistency relations to the following closeness relations

"
8,G

0
⇡X

’
2

"
8, 9 ,G,H

0,2
,"

9 ,H

1
⇡X

’
3

"
8, 9 ,G,H

3,1
,

where X is some proper error function. Now using Theorem 2.8, we can write

"
8,G

0
"

9 ,H

1
⇡

⇣’
2

"
8, 9 ,G,H

0,2

⌘ ⇣’
3

"
8, 9 ,G,H

3,1

⌘

=
⇣’

3

"
8, 9 ,G,H

3,1

⌘ ⇣’
2

"
8, 9 ,G,H

0,2

⌘

⇡ " 9 ,H

1
"
8,G

0
,
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where the equality follows from the fact that projection operators belonging to the same projective

measurement commute. É

Theorem 2.22 immediately implies that any strategy that succeeds for the 2-OF-=-MS with

probability 1 � Y must be on a Hilbert space of dimension at least (1 � poly(=)poly(X))22=, which

is nontrivial for X < 1/poly(=). Furthermore, this game is highly efficient because the number of

questions and answers grows only polynomially with =. Observe that

|X2-OF-=-MS | = =2 · |XMS |2 , |A2-OF-=-MS | = |AMS |2 ,

which means that the total number of question and answer pairs for the 2-OF-=-MS is $ (=4),

where we treat the question and answer sizes of the Magic Square game as constant.

2.3.3 The Question Sampling game

For readers who are familiar with quantum information theory, the 2-OF-=-MS can be under-

stood in the following way. In the honest strategy for 2-OF-=-MS the two players share the state

|EPRi⌦2= (i.e. 2= maximally entangled Bell pairs), and if we assume the perfect strategy for the

Magic Square game is the one coming from Figure 2.2, the observables �(1)
, . . . , �

(2=)
, ⌫

(1)
, . . . , ⌫

(2=) ,

defined in Theorem 2.23, are �(8) = /8 and ⌫(8) = -8 where /8 (resp. -8) represents the 2=-qubit

operator with the / (resp. -) Pauli operator acting on the 8-th qubit and identity everywhere else.

Then by the rigidity of 2-OF-=-MS, in any approximately optimal strategy, there are observable

that are close to these Pauli operators. These Pauli operators act nontrivially only on a single

qubit. However for the question reduction in Section 2.4, we need access to the measurements

that simultaneously measure blocks of qubits. To achieve this goal, in this section, we extend
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the 2-OF-=-MS by including a few additional questions. By doing so, and as it becomes clear

in a moment, we guarantee that any optimal strategy for the extended game must be using these

block-qubit measurement operators.

We now introduce a family of synchronous games called Question Sampling games, denoted

by QS = {QS
=
}=2N. The =-th Question Sampling game QS

=
is an extension of the 2-OF-=-MS

where there are four additional questions (�, (⌫, ⇢�, ⇢⌫, where ( and ⇢ stand for sample and

erase, respectively. The answers for these additional questions are =-bit strings.

In the honest strategy for the Question Sampling game (which we formally introduce in a

moment), the (� (resp. (⌫) measurement is supposed to correspond to measuring the first = (resp.

second =) EPR pairs in the standard basis, whereas the ⇢� (resp. ⇢⌫) measurement is supposed to

correspond to measuring the first = (resp. second =) EPR pairs in a complementary basis.

The rigidity of the 2-OF-=-MS (Theorem 2.23) implies that measurements of strategy with

high winning probability give rise to 2= pairs of (approximately) anticommuting observables

(�(8)
, ⌫

(8))
82[2=] , and the observables (approximately) commute across different pairs. This rigidity

guarantee is also present for the Question Sampling game QS
=
, but furthermore the measurements

corresponding to the additional questions also satisfy the following:

• The measurements corresponding to (� (resp. (⌫) are approximately consistent with “simul-

taneously measuring” the observables �(1)
, . . . , �

(=) (resp. �(=+1)
, . . . , �

(2=)) to produce an

=-bit string answer.

• The measurements corresponding to ⇢� (resp. ⇢⌫) are approximately consistent with “si-

multaneously measuring” the observables ⌫(1)
, . . . , ⌫

(=) (resp. ⌫(=+1)
, . . . , ⌫

(2=)) to produce

an =-bit string answer.
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Here, “approximate consistency” is used in the sense defined in Section 2.2.2. Furthermore, since

the observables referred to in each item above only approximately commute with each other, the

notion of simultaneous measurement is only meant in an approximate sense; we formalize this

below in Theorem 2.24.

We now formally define the game QS
=
= (Q=,X=,⇡QS

=

). Its question set is defined to be

Q= = X2-OF-=-MS [ {(�, (⌫, ⇢�, ⇢⌫}, and thus |Q= | = poly(=). Its answer set is defined to be

X= = A2-OF-=-MS [ {0, 1}=, and thus |X= | = $ (2=).

Remark 3. The Question Sampling game and the Introspection game, appearing in the next sec-

tion, are the only games in this paper for which we use the symbol Q (instead of X) to refer to the

question set. In fact, for the Question Sampling game the letter X is reserved for the answer set.

The reason for this convention is because, as the name suggests, the Question Sampling game is

meant to sample a question pair (G, H) for another game (this should become clearer in the section

on Introspection games).

The nontrivial questions and winning conditions of the decision procedure ⇡QS
=

(@, A, G, H) are

specified as follows (note that the answers are now denoted (G, H)). We only consider the case of

even =. The case of odd = is slightly more tedious to write down.
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Nontrivial Question Pair (@, A) Winning Condition on Answers (G, H)

@ = A G = H

(@, A) is a nontrivial question for 2-OF-=-MS ⇡2-OF-=-MS (@, A , G, H) = 1

@ = (8, 9 , B11, .) 2 X2-OF-=-MS where 8  =

2
, 9 >

=

2
, and A = (� G = (08, 0 9 ) 2 A2

MS, H 2 {0, 1}=, and H28�1 = 08

@ = (8, 9 , B12, .) 2 X2-OF-=-MS where 8  =

2
, 9 >

=

2
, and A = (� G = (08, 0 9 ) 2 A2

MS, H 2 {0, 1}=, and H28 = 08

@ = (8, 9 , B11, .) 2 X2-OF-=-MS where 8 > =

2
, 9  =

2
, and A = (⌫ G = (08, 0 9 ) 2 A2

MS, H 2 {0, 1}=, and H2(8� =
2
)�1 = 08

@ = (8, 9 , B12, .) 2 X2-OF-=-MS where 8 > =

2
, 9  =

2
, and A = (⌫ G = (08, 0 9 ) 2 A2

MS, H 2 {0, 1}=, and H2(8� =
2
) = 08

@ = (8, 9 , B22, .) 2 X2-OF-=-MS where 8  =

2
, 9 >

=

2
, and A = ⇢� G = (08, 0 9 ) 2 A2

MS, H 2 {0, 1}=, and H28�1 = 08

@ = (8, 9 , B21, .) 2 X2-OF-=-MS where 8  =

2
, 9 >

=

2
, and A = ⇢� G = (08, 0 9 ) 2 A2

MS, H 2 {0, 1}=, and H28 = 08

@ = (8, 9 , B22, .) 2 X2-OF-=-MS where 8 > =

2
, 9  =

2
, and A = ⇢⌫ G = (08, 0 9 ) 2 A2

MS, H 2 {0, 1}=, and H2(8� =
2
)�1 = 08

@ = (8, 9 , B21, .) 2 X2-OF-=-MS where 8 > =

2
, 9  =

2
, and A = ⇢⌫ G = (08, 0 9 ) 2 A2

MS, H 2 {0, 1}=, and H2(8� =
2
) = 08

Table 2.3: The nontrivial question pairs and winning conditions for the =-th Question Sampling game. We
used dot for example in (8, 9 , B11, .) 2 X2-OF-=-MS to indicate that the fourth coordinate does not matter as
long as the quadruple is a valid question in X2-OF-=-MS.

We now to describe an oracularizable synchronous strategy for QS
=

with value 1. Let ✓MS =

(g, {"@}@2XMS) be the honest strategy for the Magic Square game on the Hilbert space HMS =

C4 and let ✓2-OF-=-MS = (g⌦=, {"@}@2X2-OF-=-MS) be its extension to a perfect oracularizable syn-

chronous strategy for the 2-OF-=-MS as defined in Section 2.3.2. We extend this to a perfect

finite-dimensional oracularizable synchronous strategy ✓QS
=

for QS
=
.
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For every H 2 {0, 1}= define

"
(�

H
:= "B11

H1
"
B12

H2
⌦ "B11

H3
"
B12

H4
⌦ · · · ⌦ "B11

H=�1
"
B12

H=
⌦ 1C2= ,

"
(⌫

H
:= 1C2= ⌦ "B11

H1
"
B12

H2
⌦ "B11

H3
"
B12

H4
⌦ · · · ⌦ "B11

H=�1
"
B12

H=
,

"
⇢�

H
:= "B22

H1
"
B21

H2
⌦ "B22

H3
"
B21

H4
⌦ · · · ⌦ "B22

H=�1
"
B21

H=
⌦ 1C2= ,

"
⇢⌫

H
:= 1C2= ⌦ "B22

H1
"
B21

H2
⌦ "B22

H3
"
B21

H4
⌦ · · · ⌦ "B22

H=�1
"
B21

H=
.

Note that measurements "B11 and "B12 (and similarly "B22 and "B21) of the honest Magic Square

strategy commute as they belong to the same row. It is easily verified that {"(�

H
}, {"(⌫

H
}, {"⇢�

H
}, {"⇢⌫

H
}

are projective measurements and that ✓QS
=

= (g⌦=, {"@}
@2QQS

=

) is a synchronous strategy for

QS
=
.12

Next we show that ✓QS
=

wins with probability 1. Fix an 8  =

2
, 9 >

=

2
, C 2 XMS. Conditioned

on players receiving the nontrivial question pair ((8, 9 , B11, C), (�), which corresponds to the third

row in Table 2.3, the probability of winning is

’
02AMS

’
H2{0,1}=

g("8, 9 ,B11,C

H28�1,0
"
(�

H
) =

’
H2{0,1}=

g("8,B11

H28�1
"
(�

H
) =

’
H2{0,1}=

g("(�

H
) = 1,

12If we take the Magic Square strategy from Figure 2.2, these formulas simplify to

"
(�
H

= |HihH | ⌦ 1,

"
(⌫
H

= 1 ⌦ |HihH |,
"
⇢�
H

= �⌦= |HihH |�⌦= ⌦ 1,

"
⇢⌫
H

= 1 ⌦ �⌦= |HihH |�⌦=,

where � = 1p
2


1 1

1 �1

�
is the Hadamard transform.
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in which "8,B11

H28�1
is defined to be the marginal

"
8,B11

H28�1
:=

’
02AMS

"
8, 9 ,B11,C

H28�1,0
= 1

8�1

HMS
⌦ "B11

H28�1
⌦ 1

=�8�1

HMS
.

It is similarly verified that the probability of winning conditioned on any other question pair is 1.

Since ✓2-OF-=-MS is oracularizable in 2-OF-=-MS, to verify the oracularizability of ✓QS
=

we

just need to check commutativity between measurements for (�, (⌫, ⇢�, ⇢⌫ on one hand and mea-

surements for (8, 9 , @8, @ 9 ) on the other hand. This follows very easily from the construction of the

measurements

"
(�
,"

(⌫
,"

⇢�
,"

⇢⌫

Finally we note that in the honest strategy g("(�

G
"
(⌫

H
) = 2

�2= (and similarly g("⇢�

G
"
⇢⌫

H
) =

2
�2=) for all G, H 2 {0, 1}=. We see in a moment that approximately optimal strategies approxi-

mately satisfy these relations.

Let ✓ = (g, {"@}
@2QQS

=

) be a synchronous strategy for the Question Sampling game. For

convenience we use the notational shorthand

(
�

G
= "(�

G
and (

⌫

G
= "(⌫

G

⇢
�

G
= "⇢�

G
and ⇢

⌫

G
= "⇢⌫

G

for all G 2 {0, 1}=. We also define a family of observables derived from these measurements as
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follows. For all D 2 {0, 1}=,

$
(�

D
=

’
G2{0,1}=

(�1)D·G (�
G

and $
(⌫

D
=

’
G2{0,1}=

(�1)D·G (⌫
G

$
⇢�

D
=

’
G2{0,1}=

(�1)D·G ⇢ �
G

and $
⇢⌫

D
=

’
G2{0,1}=

(�1)D·G ⇢⌫
G
.

Note that by construction these are self-adjoint unitaries, and therefore observables. We call

(
�
, (

⌫ (resp. ⇢�, ⇢⌫) sampling measurements (resp. erasure measurements), and $(�
,$

(⌫ (resp.

$
⇢�
,$

⇢⌫) sampling observables (resp. erasure observables) . In what follows we write � =

⌫, ⌫ = �.

Theorem 2.24 (Rigidity of the Question Sampling game). Let ✓ = (g, {"@}
@2Q=) be a syn-

chronous strategy such that l(QS
=
,✓) � 1 � Y. Then for all, 2 {�, ⌫},

1. The sampling (resp. erasure) measurements almost commute with one another, that is for

every G, H 2 {0, 1}=

(
�

G
(
⌫

H
⇡ (⌫

H
(
�

G
and ⇢

�

G
⇢
⌫

H
⇡ ⇢⌫

H
⇢
�

G
.

2. Sampling measurements (, almost commute with erasure measurements ⇢
,

, that is, for

every G, H 2 {0, 1}=,

(
,

G
⇢
,

H
⇡ ⇢,

H
(
,

G
.

3. The erasure observables $⇢, approximately permute the sampling measurements (, and
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vice versa. That is, for every D, G 2 {0, 1}=,

$
⇢,

D
(
,

G
$
⇢,

D
⇡ (,

G+D and $
(,

D
⇢
,

G
$
(,

D
⇡ ⇢,

G+D .

where the arithmetic in the subscript is bitwise XOR.

4. Finally, for all G, H 2 {0, 1}=,

g((,
G
) ⇡ 2

�= and g((,
G
(
,

H
) ⇡ 2

�2=
,

g(⇢,
G
) ⇡ 2

�= and g(⇢,
G
⇢
,

H
) ⇡ 2

�2=
.

We explained the usage of ⇡ in Section 2.2.5. For a detailed example see the proof of Theo-

rem 2.21.

Proof. By the winning conditions of the game, for all 8  =/2 and 9 > =/2, we have

1 � X(Y) �
’

1,22{0,1}

’
G2{0,1}=:
G28�1=1

TR

⇣
(
�

G
"
8, 9 ,B11,B11

1,2

⌘

=
’

12{0,1}
TR

©≠
´
(
�

[G 7!G28�1 |1]

⇣ ’
22{0,1}

"
8, 9 ,B11,B11

1,2

⌘™Æ
¨
.

By the proof of rigidity of 2-OF-=-MS we have "8,B11

1
⇡ Õ

22{0,1} "
8, 9 ,B11,B11

1,2
where "8,B11

1
is the

marginal
Õ
22{0,1} "

8,succ(8),B11,B11

1,2
as defined in the previous section. So we can rewrite our earlier

inequality as
’

12{0,1}
TR

⇣
(
�

[G 7!G28�1 |1]"
8,B11

1

⌘
� 1 � X(Y) .
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Using Theorem 2.13 we can write this as closeness relation

(
�

[G 7!G28�1 |1] ⇡ "
8,B11

1
.

With a similar argument we obtain

(
�

[G 7!G28 |1] ⇡ "
8,B12

1
.

Now using the identity

(
�

G
=

=÷
8=1

(
�

[H 7!H8 |G8]

and repeated applications of Theorem 2.8, we obtain

(
�

G
⇡

=/2÷
8=1

"
8,B11

G28�1
"
8,B12

G28
.

With a similar argument we obtain

(
⌫

G
⇡

=/2÷
8=1

"
8+=/2,B11

G28�1
"
8+=/2,B12

G28
,

⇢
�

G
⇡

=/2÷
8=1

"
8,B22

G28�1
"
8,B21

G28
,

⇢
⌫

G
⇡

=/2÷
8=1

"
8+=/2,B22

G28�1
"
8+=/2,B21

G28
.
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Now by the definition of the sampling and erasure observables, we have

$
(�

D
⇡ (�(1))D1 (�(2))D2 · · · (�(=))D= ,

$
(�

D
⇡ (�(=/2+1))D1 (�(=/2+2))D2 · · · (�(=))D= ,

$
⇢�

D
⇡ (⌫(1))D1 (⌫(2))D2 · · · (⌫(=))D= ,

$
⇢�

D
⇡ (⌫(=/2+1))D1 (⌫(=/2+2))D2 · · · (⌫(=))D= ,

where �(8) and ⌫( 9) are as defined in Theorem 2.23. Properties 1-3 now follow easily from the

rigidity of 2-OF-=-MS in Theorem 2.23.

Finally, we prove 4 using 1-3. We have $⇢,

G
(
,

G
$
⇢,

G
⇡ (

,

0=
for every G 2 {0, 1}=. Apply-

ing Proposition 2.8, we obtain g($⇢,

G
(
,

G
$
⇢,

G
) ⇡ g((,

0=
). By cyclicity of tracial states we have

g((,
G
) ⇡ g((,

0=
). Now

1 = g(
’
G

(
,

G
) ⇡ 2

=

g((,
0=
),

from which we get that g("(,

0=
) ⇡ 2

�=. Similarly g((,
G
) ⇡ 2

�= for G < 0
=.
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Similar to the above line of reasoning, by repeated applications of Theorem 2.8 we have

1 =
’
G,H

g((,
G
(
,

H
)

=
’
G,H

g(($⇢,

G
)2($⇢

,

H
)2
(
,

G
(
,

H
)

⇡
’
G,H

g($⇢,

G
(
,

G
$
⇢,

G
$

⇢
,

H
(
,

H
$

⇢
,

H
)

⇡
’
G,H

g((,
0=
(
,

0=
)

= 2
2=
g((,

0=
(
,

0=
).

In the first approximation we used the fact that, operators approximately commute with, oper-

ators. The proof for erasure measurements is identical. É

Corollary 2.25 (Entanglement bound for Question Sampling). Let ✓ = (g, {"@}
@2Q=) be a syn-

chronous strategy for QS
=

over a von Neumann algebra � ⇢ ⌫(H). If l(QS
=
,✓) � 1 � Y for

sufficiently small Y > 0, then dim(H) > (1 � X(=, Y))22=.

Furthermore there exists a projection ⇧ 2 � such that g(⇧) ⇡ 2
�2= and ⇧ ⇡ (�

0=
(
⌫

0=
.

Proof. The inequality dim(H) > (1 � X(=, Y))2= is immediate from Theorem 2.23 and Theo-

rem 2.22. We now prove ⇧ exists. Let " = (
�

0=
(
⌫

0=
(
�

0=
and note that {" , 1 � "} is a POVM.

Indeed we have 0 � (�
0=
(1 � (⌫

0=
)(�

0=
� 1 � " in positive semidefinite ordering. Since (�

0=
and (⌫

0=
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approximately commute, we can write

"
2 = (�

0=
(
⌫

0=
(
�

0=
(
�

0=
(
⌫

0=
(
�

0=

⇡ (�
0=
(
⌫

0=
(
�

0=

= " .

Therefore we also have (1 � ")2 = 1 � 2" + "2 ⇡ 1 � " . So we can apply Lemma 2.17 to

obtain a projection ⇧ 2 � such that ⇧ ⇡ (�
0=
(
⌫

0=
(
�

0=
. Now again since (�

0=
and (⌫

0=
approximately

commute, we get that ⇧ ⇡ (�
0=
(
⌫

0=
. An application of Proposition 2.8 gives us g(⇧) ⇡ g((�

0=
(
⌫

0=
).

The result g(⇧) ⇡ 2
�2= now follows from item 4 in the preceding theorem.

É

We finish this section by stating a technical lemma. The lemma holds in a more general setting

but here we restricted attention only to the Question Sampling game.

Lemma 2.26. Let ✓ = (g, {"@}
@2Q=) be a synchronous strategy for QS

=
over a von Neumann

algebra � ⇢ ⌫(H) and suppose l(QS
=
,✓) � 1� Y. Also let ⇧ be the projection in the preceding

corollary and let bH be the subspace ⇧ projects onto. Then the set of operators

b� = {⇧"⇧ : " 2 �} ⇢ ⌫( bH)

is a von Neumann algebra with unit ⇧. Furthermore, the functional f : ⌫( bH) ! C defined by

f(#) = g(#)
g(⇧) , for every # 2 ⌫( bH), is a tracial state on b�.

Proof. For a proof that b� is a von Neumann algebra see the section on “Elementary properties
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of von Neumann algebras” in the notes by Vaughan Jones [68]. The functional f is a positive

linear functional because g is a positive linear functional. It is unital because f(1 bH) = f(⇧) =

g(⇧)/g(⇧) = 1. It is cyclic on b� because g is cyclic on � and b� ⇢ �. É

2.4 Question Reduction

In this section we present the Question Reduction transformation, whose properties are given

by the following Theorem.

Theorem 2.27 (Question Reduction). For all U 2 N, there exists a polynomial-time algorithm

A&D4BC8>='43D2C8>=
U

that takes as input a pair of Turing machines (⇡,⇠) and outputs a pair

of Turing machines (⇡intro
,⇠

intro) such that the following holds. If � = (⇡,⇠) is a verifier for a

sequence of games ⌃� = (⌧=)=2N and =0 2 N is an integer such that for all = � =0,

max

n
TIME⇠ (=),TIME⇡ (=)

o
 =U ,

then �intro = (⇡intro
,⇠

intro) is a verifier corresponding to a sequence of games⌃�intro = (⌧ intro

=
)=2N

with the following properties. There exists V = poly(U) 2 N and =intro

0
= poly(V, =0) 2 N such that

for all = � =intro

0
,

1. (Complexity bounds)

The questions of ⌧ intro

=
have length at most log

V

=,

TIME
⇠

intro (=)  log
V

= , and

TIME
⇡

intro (=)  =V
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2. (Completeness) For all oracularizable synchronous strategies ✓ for⌧=, there exists an orac-

ularizable synchronous strategy ✓intro for ⌧ intro

=
such that

l(⌧ intro

=
,✓intro) � l(⌧=,✓).

Furthermore, if ✓ is finite-dimensional, then so is ✓intro.

3. (Soundness) For all C 2 {@, 2>} we have

l
B

C
(⌧=) < 1 =) l

B

C
(⌧ intro

=
) < 1 .

4. (Entanglement bound)

E(⌧ intro

=
, 1) � max

�
E(⌧=, 1), 22=

 
.

Intuitively, the Question Reduction transformation transforms a sequence of games (⌧1,⌧2, . . .)

to a sequence (⌧ intro

1
,⌧

intro

2
, . . .) of “Introspection games” such that the question lengths of the In-

trospection game ⌧ intro

=
is polylogarithmic in the time complexity of the “original game” ⌧= while

the value of ⌧ intro

=
approximates the value of ⌧=. In particular, the value of ⌧ intro

=
is 1 if and

only if the value of ⌧= is 1. Furthermore, the time complexity of the Introspection game ⌧ intro

=

is polynomial in the time complexity of the original game ⌧=. The reason this is called “Ques-

tion Reduction” is because the question lengths of the original game ⌧= can be as large as =U

(because that’s the time complexity of the decision procedure ⇡=) and the question lengths of the

Introspection games are at most log
V

=. The core of the Question Reduction transformation is the
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Introspection protocol, which is a simplification of the one developed by [48, 14]. Aside from the

fact that we work in the setting of synchronous games, the two other major simplifications are that

• we only need to introspect games with uniform question distributions, and

• the transformation does not need to be gap preserving.

The bulk of this section will be spent on analyzing the Introspection protocol, and then in Sec-

tion 2.4.5 we prove Theorem 2.27.

2.4.1 Overview

Let ⌧ = (X,A,⇡) be a synchronous game with X = {0, 1}✓,A = {0, 1}<. We present a

transformation ⌧ 7! ⌧
intro where ⌧ intro is called the Introspection game corresponding to ⌧. The

question lengths of ⌧ intro will be much smaller than those of ⌧, but the values of the two games

will still be tightly related.

At an intuitive level, the question lengths are reduced in ⌧ intro by asking the players to “ask

themselves” – i.e., to introspect – their own questions from X. The players in ⌧ intro are each

asked to sample a question G 2 X and answer with 0 2 A as they would have answered in the

original game ⌧ if they have received question G. The players then each respond with a tuple

(G, 0). If the players’ responses are (G, 0) and (H, 1), the decision procedure in ⌧ intro will check

that ⇡ (G, H, 0, 1) = 1.

In order for the values of ⌧ and ⌧ intro to be meaningfully related, we need to ensure that the

players sample their introspected questions G and H from the uniform distribution (instead of, say,

always picking a fixed (G⇤, H⇤) for which they have prepared winning answers). We ensure this by

introducing a small number of special questions in the game⌧ intro. The cross-checks between these
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special questions force the players to behave “honestly” (i.e., to sample (G, H) from the uniform

distribution), or risk losing the game with some nonzero probability.

The Introspection game ⌧ intro is an extension of the Question Sampling game QS
✓

from Sec-

tion 2.3.3, where ✓ is the bit length of questions in the original game ⌧. Recall that the Question

Sampling game certifies that the players have measurements for questions (�, (⌫, ⇢�, ⇢⌫ satisfy-

ing the rigidity properties detailed in Theorem 2.24.

In addition to these questions, the Introspection game has an additional question �, which

stands for “introspect”. When a player receives question �, they are expected to answer with a

tuple (G, 0, H, 1) 2 (X ⇥ A)2, and the players win if ⇡ (G, H, 0, 1) = 1. The Introspection game

certifies the measurement corresponding to � is consistent with the following measurement process:

performing both (�, (⌫ measurements (which commute with each other) to produce (G, H) 2 X2,

and then performing measurements #G and #H (which commute with each other when (G, H) is a

nontrivial question pair in the original game) to produce (0, 1) 2 A2. Furthermore, #G commutes

with the ⇢⌫ measurement and #H commutes with the ⇢� measurement.

The fact that the � measurement is consistent with (�, (⌫ ensures that the distribution of the

pair (G, H) is uniform over X2. The fact that the the measurements #G , #H commute with the ⇢⌫

and ⇢� measurements, respectively, ensures that the output 0 of #G does not depend on H and

similarly the output 1 of #H does not depend on G. Thus the measurements {#G} give rise to a

strategy for the original game ⌧, and thus the value of ⌧ intro is related to that of ⌧.

There are several other questions that are used in the Introspection game ⌧ intro to ensure these

consistency properties. Overall, the number of questions in⌧ intro is |QS
✓
| +7, and thus the question

lengths represented in binary is dlog( |QS
✓
| + 7)e = $ (log(✓)).

We formally define the Introspection game next.
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2.4.2 Definition of Introspection game

Throughout this section, we write, to denote a value from the set {�, ⌫}, and we write

, =

8>>>><
>>>>:
⌫ if, = �,

� if, = ⌫.
.

The Introspection game ⌧ intro corresponding to ⌧ is a synchronous game (Qintro
,Aintro

,⇡
intro)

with

Qintro = QQS
✓

[ { � } [ { �, , �,(
,

, �,⇢
,

}
,2{�,⌫},

Aintro = AQS
✓

[ X [ (X ⇥A) [ (X ⇥A ⇥ X) [ (X ⇥A ⇥ X ⇥A) .

The symbol � stands for introspect, and ( and ⇢ stand for sample and erase as in the Question

Sampling game. We emphasize that the symbols �,(
,

and �,⇢
,

respectively are each individual

questions; for example ��(⌫ is distinct from the questions �� and (⌫, and is also distinct from the

question �⌫(�.

The decision procedure ⇡intro is specified by Table 2.4. On question pair (@, A) and answer pair

(b0,b1), the decision procedure checks if (@, A) is nontrivial according to the table, and if so, checks

the corresponding winning condition. For the sake of clarity, we omit the symmetric case where

the question pair is (A, @) and the answer pair is (b1,b0).
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Nontrivial Question Pair (@, A) Winning Condition on Answers (b0,b1)
@ = A b0 = b

1

(@, A) is nontrivial for QS
✓

⇡QS
✓

(@, A,b0,b1) = 1

@ = �
⇣
(G�, G⌫) is trivial for ⌧

⌘
or

⇣
I = G, ^ 2 = 0, ^ ⇡ (G�, G⌫, 0�, 0⌫) = 1

⌘

A = �, where b0 = (G�, 0�, G⌫, 0⌫) 2 (X ⇥A)2 and b
1 = (I, 2) 2 X ⇥A

@ = �, I = G, ^ 2 = 0,

A = �,(
,

where b0 = (G, , 0, ) 2 X ⇥A and b
1 = (I, 2, G

,
) 2 X ⇥A ⇥ X

@ = �, I = G,

A = (, where b0 = (G, , 0, ) 2 X ⇥A and b
1 = I 2 X

@ = �, I = G, ^ 2 = 0,

A = �,⇢
,

where b0 = (G, , 0, ) 2 X ⇥A and b
1 = (I, 2, G

,
) 2 X ⇥A ⇥ X

@ = �,⇢
,

I = G
,

A = ⇢
,

where b0 = (G, , 0, , G
,
) 2 X ⇥A ⇥ X and b

1 = I 2 X

@ = �,(
,

I = G
,

A = (
,

where b0 = (G, , 0, , G
,
) 2 X ⇥A ⇥ X and b

1 = I 2 X

Table 2.4: The nontrivial question pairs and winning conditions for the Introspection game ⌧ intro.

The nontrivial question pairs of the Introspection game ⌧ intro, apart from those in the Question

Sampling game QS
✓
, are also depicted as a graph in Figure 2.3. The questions are connected via

an edge if they form a nontrivial question pair (and self-loops are not drawn for clarity).

The rationale behind the questions �,(
,

and �,⇢
,

is the following. A player receiving the
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��(⌫ (⌫

����⇢⌫ � �⌫ �⌫⇢�⇢⌫ ⇢�

(� �⌫(�

Figure 2.3: A node indicates a special question in ⌧ intro. A pair of questions are connected with an edge if
the pair is a nontrivial question pair as defined in Section 2.2.4. There should also be loops on every node
(which we omitted here for clarity).

composite question �,(
,

, for example, is expected to answer both questions �, and (
,

. By cross-

checking this player’s answers against the other player (who may have received either �, or (
,

alone), the game ensures that the measurements corresponding to �, and (
,

commute, and this in

turn enables the “honest” strategy in the completeness case to be oracularizable. This and more

will become clear in the next subsection.

2.4.3 Completeness of Introspection

As mentioned earlier, we need to show that the value of the original game and the introspected

game are tightly related. This has two directions. First we need to show that if ⌧ has a perfect

strategy so does ⌧ intro; this is called the completeness property. In fact we prove the following

stronger statement.

Proposition 2.28 (Completeness of Introspection). For all oracularizable synchronous strategies

✓ for ⌧, there exists an oracularizable synchronous strategy ✓intro for ⌧ intro such that

l(⌧ intro
,✓intro) � l(⌧,✓) .

Furthermore, if ✓ is finite-dimensional then so is ✓intro.
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Recall that a synchronous strategy ✓ for a synchronous game ⌧ is oracularizable if for ev-

ery nontrivial question pair (@, A), the corresponding measurement operators commute (see Theo-

rem 2.19).

Proof. Let ✓ = (f, {#G}G2X) be an oracularizable synchronous strategy for ⌧ and let ✓QS
✓

=

(g, {"@}
@2QQS

✓

) be the “honest” perfect oracularizable strategy for the Question Sampling game

QS
✓

as defined in Section 2.3.3. Let HQS
✓

, H✓ and �QS
✓

✓ B(HQS
✓

),�✓ ✓ B(H✓) denote the

Hilbert spaces and algebras of the two strategies, respectively. We define a synchronous strategy

✓intro = (d, {%@}
@2Qintro), which we call the honest Introspection strategy, for⌧ intro over the algebra

�QS
✓

⌦�✓ with the tracial state d = g ⌦ f. In this proof we use the shorthand notation (,
G
, ⇢

,

G
to

denote the operators "(,

G
, "⇢,

G
from the strategy ✓QS

✓

, respectively.

The measurement operators are defined as follows. For all @ 2 QQS
✓

and G 2 AQS
✓

, let

%
@

G
= "

@

G
⌦ 1 where the 1 denotes the identity on the Hilbert space H✓. Since "@

G
is a projection

on HQS
✓

, the operators {%@
G
} are also projections and furthermore form a measurement.

For all other questions @ 2 Qintro \ QQS
✓

, we define

%
�,

G,0
:= (,

G
⌦ #G

0
, %

�,(
,

G,0,H
:= (,

G
(
,

H
⌦ #G

0
, %

�,⇢
,

G,0,H
:= (,

G
⇢
,

H
⌦ #G

0

for all , 2 {�, ⌫}, G, H 2 X, and 0 2 A. The operator %�,
G,0

is clearly a projection (because

(
,

G
, #

G

0
are projections), and forms a projective measurement. In the honest Question Sampling

strategy the operators (,
G

and (,
H

commute (by Theorem 2.24), therefore %�,(,
G,0,H

forms a projective

measurement. Similarly (,
G

and ⇢,
H

commute, therefore %�,(,
G,0,H

forms a projective measurement.

It should be clear now why we choose the notation �,(
,

and �,⇢
,

: in the honest Introspection
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strategy, we have that

%

�,(
,

G,0,H
= %�,

G,0
(
,

H
= (,

H
%
�,

G,0
and %

�,⇢
,

G,0,H
= %�,

G,0
⇢
,

H
= ⇢,

H
%
�,

G,0
. (2.4.1)

It remains to define the projective measurement {%�
G,0,H,1

} for the Introspection question �. If

(G, H) 2 X ⇥ X is a nontrivial question in ⌧, we define

%
�

G,0,H,1
:= (�

G
(
⌫

H
⌦ #G

0
#
H

1
.

Since #G
0

and #H
1

commute when (G, H) is nontrivial for ⌧ (because ✓ is oracularizable), we see

that %�
G,0,H,1

is a projection. If on the other hand (G, H) is a trivial question in ⌧, we define

%
�

G,0,H,1
:=

8>>>><
>>>>:
(
�

G
(
⌫

H
⌦ 1 if (0, 1) = (0<, 0<),

0 otherwise.

This is clearly a projective measurement as well. Intuitively, when a player receives the question �,

they first perform the sampling measurements (� and (⌫ (which can be performed simultaneously

since they commute) to obtain a pair of questions (G, H) 2 X ⇥X for the original game ⌧. If (G, H)

is trivial for ⌧, then the player outputs (G, 0<, H, 0<). Otherwise, the player then simultaneously

measures #G and #H (which commute since (G, H) is nontrivial for ⌧) to obtain answers (0, 1) 2

A ⇥A. The player then returns (G, 0, H, 1) as its answer.

Clearly ✓intro is finite-dimensional when ✓ is finite-dimensional. Next we show that ✓intro is

oracularizable and has success probability 1 in the Introspection game ⌧ intro.

First, if (@, A) is a trivial pair of questions for ⌧ intro then by definition the players win with
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probability 1 on those questions. Assume that (@, A) is a nontrivial question pair.

Suppose that (@, A) 2 QQS
✓

. Since ✓QS
✓

is oracularizable and (@, A) must also be nontrivial for

QS
✓
, the measurement operators {%@

G
} and {%A

G
} commute. Furthermore, by design the strategy

✓QS
✓

succeeds with probability 1 in the game QS
✓

and thus succeeds with probability 1 in ⌧ intro

conditioned on questions from QQS
✓

.

It remains to check the commutativity property and success probability for all question pairs

that are connected via an edge in Figure 2.3. For self-loops (i.e, question pairs (@, @)), commuta-

tivity and success probability 1 are trivially satisfied because the operators %@b0 are projections. We

now check the other nontrivial question pairs.

(�, , (, ): Commutativity follows because

%
�,

G,0
%
(,

I
= (,

G
(
,

I
⌦ #G

0
= (,

I
(
,

G
⌦ #G

0
= %(,

I
%
�,

G,0
.

Here we used the fact that (,
G
, (
,

I
are elements of the same projective measurement and thus

commute. The probability of winning conditioned on this question pair is

’
G,0

d(%�,
G,0

%
(,

G
) =

’
G,0

g((,
G
(
,

G
) f(#G

0
) =

’
G

g((,
G
) = 1 .

(�, , �,(
,
): Commutativity follows because

%
�,

G,0
%

�,(
,

I,2,H
= (,

G
(
,

I
(
,

H
⌦ #G

0
#
I

2
= (,

I
(
,

H
(
,

G
⌦ #I

2
#
G

0
= %

�,(
,

I,2,H
%
�,

G,0
.

The second equality holds because if G < I, then (,
G
(
,

I
= 0 and the equality holds trivially. If
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on the other hand G = I, the equality holds because (,
G
, (
,

H
commute with each other and #G

0
, #

G

2

commute with each other.

The probability of winning conditioned on this question pair is

’
G,0,H

d(%�,
G,0

%

�,(
,

G,0,H
) =

’
G,0,H

d(%�,
G,0

%
�,

G,0
(
,

H
) =

’
G,0

d(%�,
G,0
) = 1

where in the first equality we used (2.4.1).

(�, , �,⇢
,
): The argument for this is nearly identical to that for the previous question pair, except

we replace the sampling measurement (, with the erasure measurement ⇢, .

(�,(
,
, (
,
): Commutativity follows because

%

�,(
,

G,0,H
(
,

I
= %�,

G,0
(
,

H
(
,

I
= (,

I
%
�,

G,0
(
,

H
= (,

I
%

�,(
,

G,0,H

where in the first equality we used (2.4.1), and then we used the fact that (,
I

commute with %�,
G,0

.

The probability of winning conditioned on this question pair is

’
G,0,H

d(%�,(,
G,0,H

(
,

H
) =

’
G,0,H

d(%�,
G,0

(
,

H
(
,

H
) =

’
G,0

d(%�,
G,0
) = 1

where in the first equality we used (2.4.1) and in the second equality we used the fact that (,
H

is a

projection and forms a measurement.

(�,⇢
,
, ⇢

,
): The argument for this is identical to that for the previous question pair, except we

replace the sampling measurement (, with ⇢, .

(�, �, ): Assume without loss of generality that , = �. Commutativity is due to the following.
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Suppose (G, H) is a trivial question pair for ⌧. Then

%
�

G,0,H,0
%
��

I,2
= (�

G
(
⌫

H
(
�

I
⌦ #I

2
= (�

I
(
�

G
(
⌫

H
⌦ #I

2
= %��

I,2
%
�

G,0,H,0

where 0 is shorthand for 0
<, and for all (0, 1) < (0<, 0<) we have

%
�

G,0,H,1
%
��

I,2
= 0 = %��

I,2
%
�

G,0,H,1
.

If (G, H) is a nontrivial question pair for ⌧ then

%
�

G,0,H,1
%
��

I,2
= (�

G
(
⌫

H
(
�

I
⌦ #G

0
#
H

1
#
I

2
= (�

I
(
�

G
(
⌫

H
⌦ #I

2
#
G

0
#
H

1
= %��

I,2
%
�

G,0,H,1

where the second equality holds because if G < I, then (�
G
(
⌫

H
(
�

I
= 0 and the equality holds

trivially. If on the other hand G = I, the equality holds because #G
0
, #

H

1
, #

G

2
all commute (because

(G, H) is a nontrivial question pair and #G
0
, #

G

2
are elements of the same projective measurement).

We calculate the probability of success as follows. If (G, H) is a nontrivial question pair in the

original game ⌧ we have

d(%�
G,0,H,1

%
��

I,2
) = g((�

G
(
⌫

H
(
�

I
) f(#G

0
#
H

1
#
I

2
) = 2

�2✓
f(#G

0
#
H

1
) 1I=G,2=0

where we used the fact that in the honest strategy ✓QS
✓

we have g((�
G
(
⌫

H
) = 2

�2✓. Notation 1I=G,2=0

denotes the indicator variable for the equalities I = G, 2 = 0. If (G, H) is trivial we have

d(%�
G,0,H,1

%
��

I,2
) = 2

�2✓
f(#I

2
) 1I=G,0=1=0< .

146



So the probability of winning using ✓intro conditioned on players receiving question pair (�, ��)

is

’
G,0,H,1,I,2

d(%�
G,0,H,1

%
��

I,2
) ⇡intro(�, ��, (G, 0, H, 1), (I, 2))

=
1

22✓

’
(G,H)

nontrivial for ⌧

’
0,1

f(#G
0
#
H

1
) ⇡ (G, H, 0, 1) + 1

22✓

’
(G,H)

trivial for ⌧

’
2

f(#G
2
)

=
1

22✓

’
(G,H)

nontrivial for ⌧

’
0,1

f(#G
0
#
H

1
) ⇡ (G, H, 0, 1) + 1

22✓

’
(G,H)

trivial for ⌧

1

=
1

22✓

’
(G,H)

nontrivial for ⌧

’
0,1

f(#G
0
#
H

1
) ⇡ (G, H, 0, 1) + 1

22✓

’
(G,H)

trivial for ⌧

’
0,1

f(#G
0
#
H

1
) ⇡ (G, H, 0, 1)

= l(⌧,✓)

where in the third line we used that {#G
2
} is a measurement, and in the fourth line we used that

⇡ (G, H, 0, 1) = 1 for all trivial (G, H).

So conditioned on any pair of questions the players win with probability 1 using strategy ✓intro,

except when they receive question pair (�, ��) or (�, �⌫) in which case they win with probability

l(⌧,✓). From this we conclude that l(⌧ intro
,✓intro) � l(⌧,✓). É

2.4.4 Soundness of Introspection

The second part of showing that the value of the original game and the introspected game are

tightly related is called soundness. Informally speaking the soundness property states that if the

original game has no perfect strategy, then neither does the introspected game.

In the soundness proposition below, we also prove a lower bound on the dimension of the

Hilbert space for any perfect strategy of ⌧ intro. We show this dimension is at least as big as the
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maximum of 2
2✓ and the smallest dimension of a Hilbert space among all perfect strategies of ⌧.

Recall that ✓ is the bit length of questions in ⌧. This dimension lower bound will be used later in

the section on compression.

Proposition 2.29 (Soundness of Introspection). For all C 2 {@, 2>}

l
B

C
(⌧ intro) = 1 =) l

B

C
(⌧) = 1.

Furthermore it holds that

E(⌧ intro
, 1) � max

�
E(⌧, 1), 22✓

 
.

At a high level, the proof of Theorem 2.29 proceeds by taking a synchronous strategy ✓intro =

(d, {%@}
@2Qintro) for ⌧ intro that succeeds with probability 1 � Y, with Y sufficiently small, and “ex-

tracting” from it a strategy ✓ = (f, {#G}G2X) for the original game⌧ that has value 1�X(Y) where

X is a proper error function (see Section 2.2.5 for definition of proper error function). The error

function X also has a dependence on ✓, but since we do not need to carry that around, we hide it in

our notation X(Y).

Note that lB
@
(⌧ intro) = 1 does not imply the existence of a finite-dimensional synchronous

strategy with value 1. All we can guarantee is that for every Y > 0 there exists a finite-dimensional

synchronous strategy with value at least 1 � Y. On the other hand lB
2>
(⌧ intro) = 1 means that there

exists a perfect synchronous strategy for ⌧ intro.

To make the notation easier to read, we use the following abbreviations for the measurements

%
@ corresponding to the questions @ 2 { �, �, , �,(

,
, �,⇢

,
, (, , ⇢, }

,2{�,⌫} ✓ Qintro. For
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all, 2 {�, ⌫}, G, H 2 X and 0, 1 2 A,

�G,0,H,1 = %�G,0,H,1 , �
,

G,0
= %�,

G,0
, (�,(, )G,0,H = %

�,(
,

G,0,H

(�,⇢, )G,0,H = %
�,⇢

,

G,0,H
, (

,

G
= %(,

G
, ⇢

,

G
= %⇢,

G
.

Furthermore, we define the erasure observables

$
,

G
=

’
H2X

(�1)G·H ⇢,
H

for , 2 {�, ⌫}. Unlike the section on Question Sampling, we do not need to define sampling

observables for the purpose of proving the current proposition. We use · in the subscript to indicate

the data-processed measurement that ignores part of the measurement outcome, so for example

�·,0,H,1 =
’
G2X

�G,0,H,1,

�G,·,H,1 =
’
02A

�G,0,H,1,

�G,0,·,· =
’

H2X,12A
�G,0,H,1,

etc. We may sometime drop · when there is no risk of ambiguity, for example we may write �,
G

instead of �,
G,·.

We first prove two key lemmas establishing that in any strategy with large value certain com-

mutation relations are approximately satisfied and that introspected questions are almost uniformly

sampled. Throughout this section, we let ✓intro = (d, {%@}
@2Qintro) be a fixed synchronous strategy

for ⌧ intro with value 1 � Y.
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Lemma 2.30. The following approximate relations hold

�
,

G
⇡ (,

G

�
,

G,0
(
,

H
⇡ (,

H
�
,

G,0

�
,

G,0
(
,

H
⇡ (,

H
�
,

G,0

�
,

G,0
⇢
,

H
⇡ ⇢,

H
�
,

G,0

�
,

G,0
$
,

D
⇡ $,

D
�
,

G,0
.

Proof. As mentioned in Section 2.2.5, when we write �,
G
⇡ (,

G
we mean �,

G
⇡
X(Y) (

,

G
for some

function X such that X(Y) ! 0 as Y ! 0.

Since the strategy is winning with probability 1 � Y, the winning probability conditioned on

receiving question (�, , (, ) is at least 1� |Qintro |2Y. The expression for the probability of winning

conditioned on players receiving question pair (�, , (, ) is

’
G,0,H

d(�,
G,0
(
,

H
)⇡intro(�, , (, , (G, 0), H) =

’
G,0

d(�,
G,0
(
,

G
)

=
’
G

d(�,
G
(
,

G
).

Therefore we have
’
G

d(�,
G
(
,

G
) ⇡ 1,

or equivalently that �,
G
' (,

G
. By Lemma 2.13, we get that �,

G
⇡ (,

G
. By Proposition 2.8, we
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obtain that �,
G,0
(
,

H
⇡ �,

G,0
�
,

H
from which we arrive at our first approximate commutation relation

�
,

G,0
(
,

H
⇡ �,

G,0
�
,

H
= �,

H
�
,

G,0
⇡ (,

H
�
,

G,0

where the equality in the middle follows because operators belonging to the same projective mea-

surement commute. This is the basic idea behind the proof of the remaining approximate relations.

Next we prove the approximate commutation relation �,
G,0
⇢
,

H
⇡ ⇢,

H
�
,

G,0
(the relation �,

G,0
(
,

H
⇡

(
,

H
�
,

G,0
is proved nearly identically). Similar to our argument above for (�, , (, ), the players

winning probability conditioned on receiving question pair (⇢
,
, �,⇢

,
) is 1 � X(Y), that is

’
H

g(⇢,
H
(�,⇢, )H) ⇡ 1

from which, similar to the argument above, we arrive at ⇢,
H
⇡ (�,⇢, )H. With a similar argument,

this time starting from the winning probability conditioned on question pair (�, , �,⇢
,
), we get

that �,
G,0
⇡ (�,⇢, )G,0. Putting these together we obtain

�
,

G,0
⇢
,

H
⇡ (�,⇢, )G,0 (�,⇢, )H

= (�,⇢, )H (�,⇢, )G,0

⇡ ⇢,
H
�
,

G,0
.
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Finally the last approximate commutation relation follows

�
,

G,0
$
,

D
=

’
H2X

(�1)H.D �,
G,0
⇢
,

H

⇡
’
H2X

(�1)H.D⇢,
H
�
,

G,0

= $,
D
�
,

G,0
.

Switching the order of multiplication in �,
G,0
⇢
,

H
incurs an error of X(Y) for each G, 0, H. So over

all the norm of
Õ
H2X(�1)H.D �,

G,0
⇢
,

H
�Õ

H2X(�1)H.D⇢,
H
�
,

G,0
is bounded above by |X ⇥A ⇥X|X(Y)

which is another error function X(Y). É

Next lemma establishes that the introspected questions are sampled almost uniformly from the

question set of the original game. We then use this to justify that �G,0,H,1 is approximately � �
G,0
�
⌫

H,1

when G, H is a nontrivial question pair in the original game.

Lemma 2.31. Let �G,H = �G,·,H,·. Then the following hold

�G,H ⇡ (�G (⌫H ,

d(�G,H) ⇡
1

22✓
.

Furthermore, if G, H is a nontrivial question pair in the original game, then for every 0, 1 2 A

�G,0,H,1 ⇡ � �G,0 �⌫H,1 .

Proof. The players winning probability conditioned on receiving question pair (�, ��) is 1 � X(Y).
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So
Õ
G
d(�G,·,·,· � �G ) = 1 � X(Y) where � �

G
=

Õ
0
�
�

G,0
. Therefore �G,·,·,· ⇡ � �G and consequently �G,·,·,· ⇡

(
�

G
by Theorem 2.13. Similarly �·,H,·,· ⇡ �⌫H ⇡ (⌫H . Thus we have �G,H = �G,·,·,· �·,H,·,· ⇡ (�G (⌫H . By

Theorem 2.24 and Theorem 2.8, we conclude that d(�G,H) ⇡ 1

22✓
.

So far we established that any question pair (G, H) in the answer to the Introspection question

� occurs almost uniformly, that is with probability approximately 1/22✓. Fix a nontrivial question

pair G, H in the original game. The probability of the event that players receive question pair (�, � �)

and respond with (G, 0, H, 1) and (I, 2), respectively, for some 0, 1, 2 2 A and I 2 X is at least

(1�X(Y))2�2✓/|Qintro |2. Since the overall strategy looses with probability at most Y, the probability

of loosing conditioned on this event is bonded above by

2
2✓ |Qintro |2Y/(1 � X(Y))  2

2✓ |Qintro |2(1 + X(Y))Y = X(Y)

or in other words the probability of winning conditioned on this event is 1�X(Y). It is now a simple

exercise in probability theory to see that conditioned on receiving question (�, ��), the probability

that player receiving � answers with introspected questions (G, H) and the players win is ⇡ 2
�2✓.

By the construction of the Introspection game, if the players win, then it must be that (I, 2) =

(G, 0). Therefore we have

’
0

d(�G,0,H,· � �G,0) =
’
0,1

d(�G,0,H,1 � �G,0) ⇡ 2
�2✓

.

Using the relation �H ⇡ (⌫H that we proved earlier together with the approximate commutations in
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Theorem 2.30, we obtain

’
0

d(�G,0,H,· ((⌫H � �G,0 (⌫H )) ⇡
’
0

d(�G,0,H,· (�H � �G,0 �H)) =
’
0

d(�G,0,H,· � �G,0) ⇡ 2
�2✓

. (2.4.2)

Define positive semidefinite operators '0 = �G,0,H,· and (0 = (⌫H � �G,0(⌫H , and write

’
0

k'0 � (0k2d =
’
0

d('2

0
+ (2

0
� 2'0 (0)


’
0

d('0 + (0 � 2'0(0)

=
’
0

d('0) + d((0) � 2d('0 (0)

 2(1 + X(Y))2�2✓ � 2(1 � X(Y))2�2✓

= X(Y).

The first inequality follows from the fact that '0, (0 are positive semidefinite with operator norm

 1. The last inequality follows from d(Õ
0
'0(0) ⇡ 2

�2✓ which we proved in (2.4.2) and the

following two calculations

d(
’
0

'0) = d(�G,H) ⇡ 2
�2✓

,

d(
’
0

(0) = d((⌫H � �G (
⌫

H
) = d(� �

G
(
⌫

H
) ⇡ d((�

G
(
⌫

H
) ⇡ 2

�2✓
.

We conclude that �G,0,H,· ⇡ (⌫H � �G,0 (
⌫

H
⇡ � �

G,0
(
⌫

H
. By a similar argument we get that

�G,·,H,1 ⇡ �⌫H,1 (
�

G
.
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Putting these two together

�G,0,H,1 = �G,0,H,· �G,·,H,1 ⇡ � �G,0 (⌫H �⌫H,1 (
�

G
⇡ � �

G,0
(
�

G
�
⌫

H,1
(
⌫

H
= � �

G,0
�
�

G
�
⌫

H,1
�
⌫

H
= � �

G,0
�
⌫

H,1
.

É

We first sketch a proof of Theorem 2.29. The key step is to establish that, in any strategy that

wins with high probability in ⌧ intro, when players � and ⌫ receive questions �� and �⌫, respec-

tively, their answers (G�, 0�) and (G⌫, 0⌫) are such that (G�, G⌫) is uniformly distributed in X ⇥X

and 0� has no dependence on G⌫ and similarly 0⌫ has no dependence on G�. In other words play-

ers introspectively asked themselves a uniformly random question (G�, G⌫) and produced answers

(0�, 0⌫) as they would have answered if they received question (G�, G⌫) in the original game.

In Theorem 2.30, we proved that �,
G
⇡ (,

G
. This relation implies that on question �, the player

effectively obtains G, part of the answer by measuring {(,
G
}. So, by the rigidity properties of the

Question Sampling game, we get that (G0, G1) is sampled (almost) uniformly at random from X⇥X.

We also showed in Theorem 2.31 that (G0, G1) in answer to question � are also distributed (almost)

uniformly. From the rigidity properties of the Question Sampling game, measurements (, and

⇢
, (approximately) anticommute while they both (approximately) commute with measurements

(
, and ⇢

, . Additionally we saw in Theorem 2.30 that �, commutes with both (, and ⇢
, .

These relationships intuitively imply that the Hilbert space H can be (approximately) divided into

a tensor product H� ⌦ H⌫ ⌦ H⌧ of three Hilbert spaces such that the players measurements for

special questions (, and ⇢, are forced to act as identity on H
,

. Furthermore, the commutation

of �, with (, and ⇢, implies that operators �, act trivially on the register H
,

. Now since G
,

is

obtained by a measurement on H
,

we conclude that 0, has no dependence on G
,

.
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Putting these together, we get that the player with question �, produces G, via a measurement

on H, , then produces 0, with a measurement that depends on G, and has a nontrivial support

only on the game register H⌧ . In other words �,
G,0

= (,
G
⌦ #G

0
for some #G

0
that acts as identity on

H
,

. We can now let {#G
0
} be the measurements in a strategy in the original game ⌧ and show that

its value is large. In what follows we make this argument precise.

Proof of Theorem 2.29. Let ✓intro = (d, {%@}
@2Qintro) be a synchronous strategy for ⌧ intro that has

value at least 1 � Y. Let bH ,⇧,
b�,f be as defined in Theorem 2.26.

For every, 2 {�, ⌫}, G 2 X and 0 2 A define the operator

e,G

0
:= $,

G
�
,

G,0
$
,

G
.

Note that for every, 2 {�, ⌫} and G 2 X the operators {e,G

0
}02A are pairwise orthogonal projec-

tions. For every G 2 X define the leftover operator

e,G

? := 1 �
’
02A

e,G

0
.

Let eA = A [ {?} denote the expanded answer set. Then {e,G

0
}
02 eA is a projective measurement

for every, 2 {�, ⌫}, G 2 X.

Now for every G 2 X, 0 2 eA define

b,G

0
:= ⇧ e,G

0
⇧ .
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These are clearly positive semidefinite operators and

’
02e�

b,G

0
= ⇧

⇣’
02e�

e,G

0

⌘
⇧ = ⇧2 = ⇧ .

Since ⇧ is projection onto bH , the set of operators {b,G

0
}
02e� are POVMs on bH for every G.

Our first goal is to show that for every G, H 2 X, 0, 1 2 A it holds that

d(b�G
0

b⌫H
1
) ⇡ d(� �

G,0
�
⌫

H,1
). (2.4.3)

We achieve this by repeatedly applying Theorem 2.8. First recall from Theorem 2.25 that ⇧ ⇡

(
�

0
(
⌫

0
. Here we use 0 as a shorthand notation for 0

✓. So we have

d(b�G
0

b⌫H
1
) = d(⇧ e

�
G

0
⇧ e⌫H

1
⇧)

⇡ d((�
0

e
�
G

0
(
�

0
(
⌫

0
e⌫H
1
(
⌫

0
),

where we used Theorem 2.24 which states that (�
0

and (⌫
0

approximately commute. We continue

by expanding e
�
G

0
and e⌫G

0
to obtain

d((�
0

e
�
G

0
(
�

0
(
⌫

0
e⌫H
1
(
⌫

0
) = d((�

0
($�

G
�
�

G,0
$
�

G
) (�

0
(
⌫

0
($⌫

H
�
⌫

H,1
$
⌫

H
) (⌫

0
)

⇡ d(($�

G
(
�

G
�
�

G,0
(
�

G
$
�

G
) ($⌫

H
(
⌫

H
�
⌫

H,1
(
⌫

H
$
⌫

H
))

where in the last line, we used Theorem 2.24 which states that (,
0
$
,

G
⇡ $,

G
(
,

G
. By Theorem 2.30
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we have �,
G
⇡ (,

G
so

d(($�

G
(
�

G
�
�

G,0
(
�

G
$
�

G
) ($⌫

H
(
⌫

H
�
⌫

H,1
(
⌫

H
$
⌫

H
)) ⇡ d(($�

G
�
�

G
�
�

G,0
�
�

G
$
�

G
) ($⌫

H
�
⌫

H
�
⌫

H,1
�
⌫

H
$
⌫

H
))

⇡ d(($�

G
�
�

G,0
$
�

G
) ($⌫

H
�
⌫

H,1
$
⌫

H
))

where in the last line we used that �,
G

=
Õ
0
�
,

G,0
and that �,

G,0
are projections. Now using Theo-

rem 2.30 again, we know that erasure observables $, approximately commute with �, projec-

tions. We also know that erasure observables$� and$⌫ approximately commute. So we continue

as follows

d(($�

G
�
�

G,0
$
�

G
) ($⌫

H
�
⌫

H,1
$
⌫

H
)) ⇡ d($⌫

H
$
�

G
�
�

G,0
�
⌫

H,1
$
�

G
$
⌫

H
)

⇡ d(($⌫

H
)2 ($�

G
)2
�
�

G,0
�
⌫

H,1
)

= d(� �
G,0

�
⌫

H,1
).

This completes the proof of Equation (2.4.3).

Our next goal is to show that POVMs {b,G

0
}0 are close to being projective measurements. To

this end, we first show that for any G 2 X and 0, 1 2 A

b,G

0

b,G

1
⇡ b,G

0
10=1 (2.4.4)

where 10=1 is the indicator variable for the equality 0 = 1. First expanding according to the
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definitions

b,G

0

b,G

1
= ⇧ $

,

G
�
,

G,0
$
,

G
⇧ $

,

G
�
,

G,1
$
,

G
⇧

⇡ ⇧ $
,

G
�
,

G,0
$
,

G
((,

0
(
,

0
(
,

0
)$,

G
�
,

G,1
$
,

G
⇧

where in the last line we used the fact that ⇧ ⇡ (
,

0
(
,

0
(
,

0
by Theorem 2.25. Now sampling

projections (, commute with erasure observables $, and Introspection projections �, so
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�
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0
(
,

0
(
,

0
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G
�
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G
⇧ ⇡ ⇧ (

,

0
$
,

G
�
,

G,0
$
,

G
(
,

0
$
,

G
�
,

G,1
$
,

G
(
,

0
⇧

⇡ ⇧ $
,

G
�
,

G,0
$
,

G
(
,

0
$
,

G
�
,

G,1
$
,

G
⇧

where in the last line we use the fact that ⇧ ⇡ (,
0
(
,

0
(
,

0
, and hence ⇧ (

,

0
⇡ ⇧ ⇡ (,

0
⇧. Now

moving (,
0

passed$,
G

using the relation$,
G
(
,

0
⇡ (,

G
$
,

G
, and then using the fact that ($,

G
)2 = �

(as $,
G

is an observable), we get

⇧ $
,

G
�
,

G,0
$
,

G
(
,

0
$
,

G
�
,

G,1
$
,

G
⇧ ⇡ ⇧ $

,
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�
,
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(
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$
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G
⇧
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(
,

G
�
,

G,1
$
,

G
⇧

Now substituting �,
G

in place of (,
G

we get

⇧ $
,

G
�
,

G,0
(
,

G
�
,

G,1
$
,

G
⇧ ⇡ ⇧ $

,

G
�
,

G,0
�
,

G
�
,

G,1
$
,

G
⇧

⇡ ⇧ $
,

G
�
,

G,0
�
,

G,1
$
,

G
⇧

= b,G

0
X0,1,
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where in the last line we used the fact that �,
G,0

and �,
G,1

are orthogonal projections when 0 < 1.

This completes the proof of Equation (2.4.4). From this, we immediately obtain that (b,G

?)2 ⇡ b,G

?

also. So we established that

(b,G

0
)2 ⇡ b,G

0

for all G 2 X and 0 2 eA. Using Theorem 2.8, this in turn implies that

d((b,G

0
)2) ⇡ d(b,G

0
)

for all 0 2 eA. By definition of f it is also true that

f((b,G

0
)2) ⇡ f(b,G

0
).

So far we established that b,G

0
, as operators in b� acting on bH , are close to projections. So applying

Theorem 2.17, for every, 2 {�, ⌫} and G 2 X, there exists a projective measurement {,G

0
}0 ⇢ b�

that is close to {b,G

0
}0.

Our final goal is to build a strategy for ⌧ using these hard-earned projective measurements

{�G} and {⌫H}. On our way, we first need to relate {�G
0
}0 and {⌫H

1
}1 to the original measurements

�
�

G,0
and �⌫

H,1
. For every G, H 2 X, 0, 1 2 A, we can write

f(�G
0
⌫
H

1
) ⇡ f(b�G

0

b⌫H
1
) =

d(b�G
0

b⌫H
1
)

d(⇧) ⇡
d(b�G

0

b⌫H
1
)

2�2✓
⇡
d(� �

G,0
�
⌫

H,1
)

2�2✓
.
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From this and Theorem 2.31, if G, H is nontrivial in ⌧, it holds that

1

22✓
f(�G

0
⌫
H

1
) ⇡ d(�G,0,H,1).

Therefore summing over all nontrivial question pairs, we have

’
G,H

nontrivial

1

22✓

’
0,12A

⇡ (G, H, 0, 1)f(�G
0
⌫
H

1
) ⇡

’
G,H

nontrivial

’
0,12A

⇡ (G, H, 0, 1)d(�G,0,H,1).

A similar approximate identity holds when summing over trivial question pairs, that is

’
G,H

trivial

1

22✓

’
0,12A

⇡ (G, H, 0, 1)f(�G
0
⌫
H

1
) ⇡

’
G,H

trivial

’
0,12A

⇡ (G, H, 0, 1)d(�G,0,H,1).

Let us see why this is true. First using the fact that ⇡ (G, H, 0, 1) = 1 for all 0, 1 and trivial question

pair G, H, we can write

’
G,H

trivial

1

22✓

’
0,12A

⇡ (G, H, 0, 1)f(�G
0
⌫
H

1
) =

’
G,H

trivial

1

22✓

’
0,12A

f(�G
0
⌫
H

1
) =

’
G,H

trivial

1

22✓

where in the last equality we used the fact that
Õ
0,1
�
G

0
⌫
H

1
= � bH . Luckily, we also know that
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d(�G,H) ⇡ 1

22✓
by Theorem 2.31, and thus

’
G,H

trivial

1

22✓
⇡

’
G,H

trivial

d(�G,H)

=
’
G,H

trivial

’
0,12A

d(�G,0,H,1)

=
’
G,H

trivial

’
0,12A

⇡ (G, H, 0, 1)d(�G,0,H,1)

where in the last line we again used the fact that ⇡ (G, H, 0, 1) = 1 for all 0, 1 and trivial question

pair G, H.

So overall we established that

’
G,H

1

22✓

’
0,12A

⇡ (G, H, 0, 1)f(�G
0
⌫
H

1
) ⇡

’
G,H

’
0,12A

⇡ (G, H, 0, 1)d(�G,0,H,1).

The right-hand-side is an upper bound on the probability of winning of ✓intro conditioned on the

event that one of the players received the Introspection question �. This probability must be at least

1 � X(Y) by a simple averaging argument. So we have

’
G,H

1

22✓

’
0,12A

⇡ (G, H, 0, 1)f(�G
0
⌫
H

1
) = 1 � X(Y). (2.4.5)

To summarize, at a high level, we constructed a set of operators �G
0

and ⌫H
1

that together resemble

a strategy for ⌧ albeit with two sets of measurement operators instead of one. It remains to show

that we can turn this into a synchronous strategy. From Equation (2.4.5), for every G 2 X it must
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be that
’
0,12A

⇡ (G, G, 0, 1)f(�G
0
⌫
G

1
) = 1 � X(Y).

Since ⌧ is synchronous, we have ⇡ (G, G, 0, 1) = 0 whenever 0 < 1. Therefore

’
02A

f(�G
0
⌫
G

0
) = 1 � X(Y)

or equivalently that �G
0
' ⌫G

0
for every G 2 X. Therefore by Theorem 2.13, it holds that �G

0
⇡ ⌫G

0

for every G 2 X. Therefore f(�G
0
⌫
H

1
) ⇡ f(�G

0
�
H

1
). Using this approximation in (2.4.5) we

conclude that

’
G,H2X

1

22✓

’
0,12A

⇡ (G, H, 0, 1)f(�G
0
�
H

1
) = 1 � X(Y). (2.4.6)

Now we reduced to one set of measurement operators �G
0

that more closely resemble a synchronous

strategy for ⌧. Unfortunately we are not quite there as the set of operators {�G
0
}02A is not a

projective measurement if �G? < 0. We can resolve this issue by defining projective measurements

{#G
0
}02A for every G such that #G

0
⇤ = �G

0
⇤+�G? for some special element 0⇤ 2 A and #G

0
= �G

0
for all

0 < 0⇤. Now ✓ = (f, {#G}G2X) is a synchronous strategy and is such that f(#G
0
#
H

1
) � f(�G

0
�
H

1
).

So by (2.4.6), we have

l(⌧,✓) =
’
G,H2X

1

22✓

’
0,12A

⇡ (G, H, 0, 1)f(#G
0
#
H

1
) = 1 � X(Y).

So for all sufficiently small Y, if there exists a strategy ✓intro with value at least 1 � Y, we showed
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the existence of a strategy for ⌧ with value 1 � X(Y). This in turn implies that for all C 2 {@, 2>}

l
B

C
(⌧ intro) = 1 =) l

B

C
(⌧) = 1.

Next we prove the inequality

E(⌧ intro
, 1) � max

�
E(⌧, 1), 22✓

 
.

Suppose the finite dimensional strategy ✓intro = (d, {%@}
@2Qintro) defined over a Hilbert space H

has value 1. Then since the strategy restricted to the Question Sampling game also wins with

probability 1, from Theorem 2.25, we get that the dimension of H is at least 2
2✓.

It remains to show that E(⌧ intro
, 1) � E(⌧, 1). Consider the finite-dimensional strategy ✓ =

(f, {#G
0
}) constructed above for the original game ⌧. The inequality now follows from the fact

that the strategy ✓ is over the Hilbert space bH defined in Theorem 2.26 which is a subspace of H .

É

2.4.5 Proof of Theorem 2.27

From Theorem 2.20, we can let ⌧= = (X=,A=,⇡=) where X= = {0, 1}✓= for some polynomial-

time computable function ✓= of =. As we indicated in Theorem 2.20, the decider and checker Turing

machines discard any string that comes after the ✓=th bit in their second and third input tapes. By

assumption, for all sufficiently large =, we have ✓=  =U, so from our previous statement, we can

simply assume that ✓= = =
U. We design the algorithm A&D4BC8>='43D2C8>=

U
so that ⌧ intro

=
is

the Introspection game (⌧=)intro as defined in Section 2.4.2. From the definition of Introspection,
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it is straightforward to see that a polynomial-time algorithm exists that computes a description

of �intro = (⇡intro
,⇠

intro) from a description of � = (⇡,⇠). The question length of ⌧ intro

=
is

poly(U, log =) by the definition of the Introspection game and the assumption that ✓= = =U.

Given a pair of questions in ⌧ intro

=
, if they are both Question Sampling questions, then they are

a nontrivial question pair in the Introspection game if and only if they are a nontrivial question pair

in the Question Sampling game. If questions are both among special questions

(�, ⇢�, ��, ��(⌫, ��⇢⌫, (⌫, ⇢⌫, �⌫, �⌫(�, �⌫⇢�,

then the pair is nontrivial if they are connected by an edge or a self-loop in Figure 2.3. Since

this graph has constant size, this can be decided in $ (1). If one question is a Question Sampling

question that is not any of (�, (⌫, ⇢�, ⇢⌫ and the other is a special Introspection game question

��, ��(⌫, ��⇢⌫, �⌫, �⌫(�, �⌫⇢�,

then the pair is trivial. Therefore the complexity of deciding if a pair is trivial in ⌧ intro

=
is asymp-

totically the same as the complexity of deciding if a pair is trivial in QS
=
U which is poly(U, log =)

(see Table 2.3).

Next we bound the complexity of ⇡intro(=). The bit length of questions in the Introspec-

tion game ⌧ intro

=
is poly(U, log =). The answer length of ⌧ intro

=
is =U (as the answer length of ⌧=

is bounded by TIME⇡ (=)). So the decider can compute in time poly(=U) whether the answer

format of ⌧ intro

=
is respected. The decider, by simulating ⇡ (=) and ⇠ (=), can compute in time

poly( |⇡ |, |⇠ |, U, =U) whether a give quadruple (@, A,b0,b1) is an accepting quadruple in ⌧ intro

=
ac-
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cording to Table 2.4.

The completeness, soundness, and the dimension bound follow immediately from Propositions

2.28 and 2.29.

2.5 Answer Reduction

In this section we present the answer reduction transformation, whose properties are given by

the following Theorem.

Theorem 2.32 (Answer Reduction). For all V 2 N there exists a polynomial-time algorithm

A�=BF4A'43D2C8>=V that takes as input a pair of Turing machines (⇡,⇠) and outputs a pair

of Turing machines (⇡ans
,⇠

ans) such that the following holds. If � = (⇡,⇠) is a verifier for a

sequence of games ⌃� = (⌧=)=2N and =0 2 N is an integer such that for all = � =0,

The questions of ⌧= have length at most log
V (=),

TIME⇠ (=) = log
V

= , and

TIME⇡ (=)  =V

then the output �ans = (⇡ans
,⇠

ans) is a verifier for a sequence of games⌃�ans = (⌧ans

=
)=2N with the

following properties. There exists W = poly(V) and =ans

0
= poly(WW, =0) such that for all = � =ans

0
,

1. (Complexity bounds)

TIME⇡
ans (=) = log

W

=

TIME⇠ans (=) = log
W

= .
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2. (Completeness) For all oracularizable synchronous strategies ✓ for⌧=, there exists an orac-

ularizable synchronous strategy ✓ans for ⌧ans

=
such that

l(⌧ans

=
,✓ans) � 1

2
+ 1

2
l(⌧=,✓).

Furthermore, if ✓ is finite-dimensional, then so is ✓ans.

3. (Soundness) For all C 2 {@, 2>} we have

l
B

C
(⌧=) < 1 =) l

B

C
(⌧ans

=
) < 1 .

4. (Entanglement bound)

E(⌧ans

=
, 1) � E(⌧=, 1) .

Intuitively, the answer reduction transformation transforms a sequence of games (⌧1,⌧2, . . .)

to a sequence (⌧ans

1
,⌧

ans

2
, . . .) such that the time complexity of the “answer reduced” game ⌧ans

=

(in terms of computing its decision predicate) is polylogarithmic in the time complexity ) (=)

of the “original game” ⌧=, and polynomial in the question length &(=) of ⌧=. The reason this

transformation is called “answer reduction” is as follows. Suppose the original game ⌧= already

has polylogarithmic-length questions (i.e. &(=)  poly(log) (=))), but the answer lengths are,

say, ⌦() (=)); this will be the case when we apply answer reduction to the introspection games

from the previous section. The resulting game ⌧ans

=
then has time complexity poly(log) (=)) and

in particular both the question and answer lengths of ⌧ans

=
are at most poly(log) (=)).

We describe and analyze the answer reduction transformation ⌧ 7! ⌧
ans for a single game
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(rather than a sequence), and then prove Theorem 2.32 in Section 2.5.5.

2.5.1 Overview

Let &,) 2 N be integers and let ⌧ = (X,A,⇡) be a synchronous game where X = {0, 1}&

and A = {0, 1}) , and TIME⇡  ) (meaning that on all inputs ⇡ halts within ) timesteps). We

can assume via padding that all questions have the same length, and all the answers have the same

length.

Oracularization. We first give an overview of a transformation on ⌧ called oracularization.

This produces the following game ⌧orac. The verifier may send a player either a question G 2 X

or a pair of questions (G, H) 2 X2; thus the question alphabet is X [ X2. When a player receives

a single question G we call them an isolated player and its question an isolated question. When a

player receives a pair (G, H) we call them an oracle player and its question an oracle question.

If both players receive the same question (either isolated or oracle), then they must return the

same answer. If one player receives an oracle question (G, H) 2 X2 that is nontrivial for the original

game ⌧ and the other receives an isolated question G (resp. receives H), then the players win if the

oracle player responds with an answer pair (0, 1) 2 A2 such that ⇡ (G, H, 0, 1) = 1 and the isolated

player responds with answer 0 (resp. responds with answer 1). All other question combinations

are considered trivial for ⌧orac, and the players automatically win in those cases.

Intuitively, in the oracularization of ⌧ an oracle player must “simulate” the behavior of the

two players in ⌧, and the isolated player (who only receives half of the oracle question) is used to

check that the oracle player’s answers (0, 1) are produced in a way that 0 only depends on G and 1

only depends on H.

168



Answer Reduction. We now give a high-level overview of the answer-reduced game ⌧ans =

(Xans
,Aans

,⇡
ans). The questions of ⌧ans are of the form (6, ?), where 6 is a game question and

? is a proof question. The game question 6, intuitively, is meant to indicate a question from the

original game ⌧. However, in the answer reduction transformation, the game questions 6 come

from the oracularization ⌧orac of ⌧.

In the oracularized game ⌧orac, the players are supposed to respond with either an answer from

A or from A2, depending on whether they received an isolated or oracle question. In the answer

reduced game ⌧ans, however, the players do not respond with a “full-sized” answer in A [ A2.

Instead, the verifier expects that the oracle players will generate a proof c that they can produce

answers (0, 1) 2 A2 that satisfies the decision predicate of the game ⌧, and furthermore these

answers can be produced in a way such that 0 only depends on G and 1 only depends on H. The

verifier does not examine this purported proof c in its entirety but instead uses the proof question

? to query it in a constant number of locations.

The main point is this: now the players only have to respond with a constant number of bits

corresponding to the proof locations queried, rather than with a symbol from the set A[A2 (whose

size we think of as growing to infinity). To ensure that the players’ answers to the local queries are

consistent with a global proof string c, and that the purported answers (0, 1) (which are included

in c) was generated “honestly” (e.g., 0 does not depend on G), the verifier performs cross-checks

between the two players. Before describing the format of the proof questions, we first explain in

detail what a proof is supposed to look like.

The starting point is the well-known Cook-Levin reduction from classical computer science:

this is an efficient transformation that maps Turing machines " to 3SAT formulas i" such that

there is an input F (called the witness) where " (F) = 1 if and only if i" is satisfiable. Further-
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more, it is well-known [70, Chapter 20] that the clauses of the SAT formula i" can be computed

extremely efficiently – in fact, in time that is logarithmic in the size of the entire SAT formula (if

we treat the description length of " as a constant):

Theorem 2.33 (Cook-Levin Theorem). For all 1-input Turing machines " and integers ',) 2 N,

there exists a 3SAT formula i(" ,) , ') (called a Cook-Levin SAT formula) with ! = poly( |" |,) , ')

variables, such that

• For all F 2 {0, 1}' such that " (F) accepts within ) time steps, there exists a unique

satisfying assignment c for the formula i(" ,) , '), and furthermore c' (the first ' bits of

c) is F, and

• For all satisfying assignments c for the formula i(" ,) , '), the Turing machine " accepts

c' within ) time steps.

Furthermore, there exists a polynomial-time algorithm A⇠>>:!4E8= that takes as input a tuple

(" ,) , ', 8, 9 , :) where ',) , 8, 9 , : are integers written in binary, and outputs the literals of the

clause(s) of i(" ,) , ') that contains the 8-th, 9-th, and :-th variables (or outputs a null symbol if

no such clause exists).

We note that while the algorithm A⇠>>:!4E8= runs in polynomial time in the length of its

input, it runs in logarithmic time in the number of variables of the Cook-Levin SAT formula

i(" ,) , '). This is because the length of the input tuple (" ,) , ', 8, 9 , :) is $ ( |" | + log) +

log ' + log 8 + log 9 + log :), and since the variable indices 8, 9 , : are at most poly( |" |,) , '), the

time complexity of the algorithm A⇠>>:!4E8= is at most poly( |" |, log) , log ').

The verifier in the answer-reduced game ⌧ans expects an oracle player who received game

question pair 6 = (G, H) to compute a string c satisfying the following:
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1. c is a satisfying assignment for the Cook-Levin SAT formula i(⇡G,H,) , 2)) where ⇡G,H is

the 1-input Turing machine that on input (0, 1) 2 {0, 1}2) executes the Turing machine ⇡

on input (G, H, 0, 1), and

2. c is composed of three strings (0, 1, c0) 2 {0, 1}) ⇥ {0, 1}) ⇥ {0, 1}! where

! = poly( |⇡G,H |,)) = poly( |⇡ |,&,)). Here we used that the description length |⇡G,H | =

$ ( |⇡ | + |G | + |H |) = poly( |⇡ |,&).

Henceforth we shall abbreviate the Cook-Levin formula i(⇡G,H,) , 2)) as iG,H.

The verifier asks proof questions ? in order to ascertain whether it is possible for an oracle

player to generate a proof c satisfying these conditions. This requires the verifier to ask proof

questions to both oracle players and isolated players. Oracle players (who get game question pair

6 = (G, H)) can get asked to provide:

• A single bit c8 of the proof c, or

• A triple of bits (c8, c 9 , c: ) from the proof c (which may not necessarily correspond to a

clause in iG,H).

An isolated player (who gets a single question G or H) is asked to provide a pair of bits (08, 0 9 ) of

their purported answer 0 2 {0, 1}) .

Thus the proof questions are sampled from the set [!] [ [!]2 [ [!]3. Thus the question and

answer sets for ⌧ans are

Xans = Xorac ⇥ ( [!] [ [!]2 [ [!]3) Aans = {0, 1} [ {0, 1}2 [ {0, 1}3

where Xorac = X [ X2 is the question alphabet for the oracularized game ⌧orac.
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Since the player answers (0, 1) are supposed to be embedded into a proof c, we use the fol-

lowing mapping to translate between indexing into answer 0 or 1 versus indexing into the proof c:

given an index 8 2 [)], the 8-th bit of the first answer 0 (corresponding to the first question G) is

mapped to index [(8) = 8 of the proof c, and the 8-th bit of the second answer 1 (corresponding to

the second question H) is mapped to index _(8) = ) + 8 of c.

2.5.2 The answer-reduced decision procedure

We now formally specify the decision procedure ⇡ans. On input (bG,bH,b0,b1), it checks if (bG,bH)
(resp. (bH,bG)) is one of the nontrivial question pairs of ⌧ans, which are presented in Table 2.5. If

so, then it accepts if and only if the answers (b0,b1) (resp. (b1,b0)) satisfy the corresponding winning

condition. Otherwise, if (bG,bH) is a trivial question, the verifier automatically accepts.

Nontrivial Question Pair (bG,bH) Winning Condition on Answers (b0,b1)
bG = bH b0 = b

1

bG = ((G, H), 8) where (G, H) is nontrivial for ⌧ (B 9 , B: , B✓) satisfies clause(s) specified by

bH = ((G, H), ( 9 , : , ✓)) where 8 2 { 9 , : , ✓} A⇠>>:!4E8=(⇡G,H,) , 2) , 9 , : , ✓) and A8 = B8, where

b0 = A8 2 {0, 1}, b1 = (B 9 , B: , B✓) 2 {0, 1}3

bG = ((G, H), 8) where (G, H) is nontrivial for ⌧ A8 = 0[�1 (8)

bH = (G, ( 9 , :)) where 8 2 {[( 9), [(:)} where b0 = A8 2 {0, 1}, b1 = (0 9 , 0: ) 2 {0, 1}2

bG = ((G, H), 8) where (G, H) is nontrivial for ⌧ A8 = 1_�1 (8)

bH = (H, ( 9 , :)) where 8 2 {_( 9), _(:)} where b0 = A8 2 {0, 1}, b1 = (1 9 , 1: ) 2 {0, 1}2

Table 2.5: The nontrivial question pairs and winning conditions for the game ⌧ans.
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Table 2.5 should be read as follows. In the second row, for example, the nontrivial question

pair is where bG = (61, ?1) where 61 = 62 = (G, H) 2 X2 where (G, H) is nontrivial for ⌧, ?1 = 8

for some 8 2 [!], and ?2 = ( 9 , : , ✓) 2 [!]3 such that 8 2 { 9 , : , ✓}. The answer b0 is expected to

be a single bit A8 and b
1 is expected to be a triple of bits (B 9 , B: , B✓); otherwise the verifier rejects.

The verifier then checks that A8 = B8 (i.e. the first player’s assignment to the 8-th variable of the

proof is the same as the second player’s assignment to the 8-th variable), and the second player’s

assignment (B 9 , B: , B✓) satisfies the clause of iG,H that involves the triple of variables ( 9 , : , ✓). If

there is no clause, then the verifier accepts any assignment to those variables.

2.5.3 Completeness of answer reduction

We now prove the completeness property of the answer reduction transformation. Similarly to

Section 2.4, the completeness property implies that the value of⌧ans is lower bounded by the value

of ⌧.

Proposition 2.34. For all oracularizable synchronous strategies ✓ for ⌧, there exists an oracular-

izable synchronous strategy ✓ans for ⌧ans such that

l(⌧ans

=
,✓ans) � 1

2
+ 1

2
l(⌧=,✓) .

Furthermore, if ✓ is finite-dimensional then so is ✓ans.

Proof. Let ✓ = (g, {"G}) be a tracial synchronous strategy for ⌧ that commutes on the set of

nontrivial questions of ⌧. We now define a tracial strategy ✓ans = (g, {#G}) for ⌧ans. Before

doing so, we define some intermediate measurements. Let X and A denote the question and

answer sets of ⌧, respectively. For all G, H 2 X, 0, 1 2 A:
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• #G,H
0,1

=

8>>>>>>>><
>>>>>>>>:

"
G

0
"
H

1
if (G, H) is a nontrivial question for ⌧

1 if (G, H) is a trivial question for ⌧ and 0 = 1 = 0

0 otherwise

• #G
0
= "G

0
.

The POVM #
G is projective because "G is projective. Note that whenever (G, H) is a nontrivial

question of ⌧, the projectors "G

0
and "H

1
commute, so #G,H is always projective.

Now we define the measurements for ✓ans:

1. #G, 9 ,: = #G[0 7!(0 9 ,0:)]

2. #G,H,8 = #G,H[(0,1) 7!c8]

3. #G,H,8, 9 ,: = #G,H[(0,1) 7!(c8 ,c 9 ,c:)]

where here c denotes the unique satisfying assignment to the Cook-Levin SAT formula iG,H such

that c = (0, 1,F) for some string F.

We now verify that the strategy ✓ans satisfies the desired properties: it is synchronous because

the measurements are all projective. It commutes on the nontrivial questions of ⌧ans, as seen by

the following case analysis: letting bG = (61, ?1) and bH = (62, ?2),

1. If bG = bH, then clearly the measurements #bG and #bH commute with each other because they

are the same measurement.

2. If 61 = 62 = (G, H), ?1 = 8, and ?2 = ( 9 , : , ✓), then #bG and #bH are marginalizations of the

same projective measurement {#G,H}, and thus #bG , #bH commute with each other.
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3. If 61 = (G, H), ?1 = 8, 62 = G (or 62 = H) and ?2 = ( 9 , :), then either (G, H) is a trivial question

for ⌧ (in which case #bG is the identity measurement, which commutes with everything), or

(G, H) is a nontrivial question, in which case #bG is a marginalization of the product "G

0
"
H

1
,

whereas #bH is a marginalization of "G

0
(resp. "H

1
), which commutes with "H

1
(resp. "G

0
).

Clearly, the dimensionality of ✓ans is the same as the dimension of ✓.

Finally, we can evaluate the winning probability of ✓ans as follows: let W denote the probability

that at least one of the players that receives a question (6, ?) where 6 = (G, H) with (G, H) nontrivial

for⌧. If neither player receives such a game question, then either their question pair (bG,bH) is trivial

for ⌧ans (in which case the players win automatically), or bG = bH (in which case the players win

because their strategy is synchronous).

Suppose one of the players (say, the first player) receiving such question pair bG = (6, ?).

Intuitively, this oracle player will simultaneously measure "G and "H to obtain answers (0, 1).

Since G an H are drawn uniformly at random, the probability that ⇡ (G, H, 0, 1) = 1 is exactly

l(⌧,✓). Suppose (0, 1) are winning answers. Then the oracle player can compute a satisfying

assignment c = (0, 1,F) for the Cook-Levin formula iG,H – this uses the assumption that TIME⇡ 

) . Furthermore, the second player, no matter what question bH they receive, they will be able to

obtain perfectly consistent answers (if they receive game question (G, H), then they can obtain the

same proof c = (0, 1,F); if they receive game questions G or H, they will obtain the same answers

0 or 1, respectively). Thus the success probability of the strategy ✓ans overall is at least

l(⌧ans
,✓ans) � (1 � W) + W l(⌧,✓) .

Since W  1/2, the Proposition follows. É
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2.5.4 Soundness of answer reduction

Proposition 2.35. For all C 2 {@, 2>}, lB
C
(⌧) < 1 =) l

B

C
(⌧ans) < 1.

Proof. Let✓ans = (g, {#bG}) be a tracial synchronous strategy for⌧ans that has value 1�Y. Our goal

will be to construct measurements {"G

0
} and {"G,H

c
} that produce entire answer strings and entire

proof strings, respectively. They will be constructed from the #G,H,8 and #G, 9 ,: measurements which

only provide “local” views of purported answer and purported proof strings. In order to “paste”

these “local” views together into consistent “global” views, we will need to establish pairwise

consistency conditions between the measurement operators of the strategy ✓ans.

From the condition that the strategy ✓ans has value 1 � Y, we obtain the following consistency

conditions pointwise over all G, H 2 X and 8, 9 , : , ✓ 2 [!]:

• #G,H,8
A
' #G,H, 9 ,: ,✓[(B 9 ,B: ,B✓ ) 7!B8 |A] whenever 8 2 { 9 , : , ✓},

• #G,H,[( 9)
A

' #G, 9 ,:[(0 9 ,0:) 7!0 9 |A] and #G,H,[(:)
A

' #G, 9 ,:[(0 9 ,0:) 7!0: |A]

• #G,H,_( 9)
A

' #H, 9 ,:[(0 9 ,0:) 7!0 9 |A] and #G,H,_(:)
A

' #H, 9 ,:[(0 9 ,0:) 7!0: |A]

In other words, the assignments to variables that are in common to both players’ questions are

approximately consistent. Here and throughout this proof, all approximations “'” and “⇡” implic-

itly hide some error function X(Y) that goes to 0 as Y ! 0. Furthermore, the error function will

generally be different each time the “'” or “⇡” notation is used. (See Section 2.2.5 for a more

in-depth discussion of approximations and asymptotics).

We first prove a utility lemma, which will be used repeatedly throughout the analysis of sound-

ness:
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Lemma 2.36. Let C 2 N and let � = {�A} denote a projective measurement with outcomes in RC .

For 8 2 [C], let ⌫8 = {⌫8
A
} be a POVM with outcomes in R. Suppose that for all 8 2 [C],

�[A 7!A8 |2] 'X ⌫82

where the answer summation is over 2 2 R. Then for all permutations f 2 (C , we have that

�A ⇡
C

p
2X
⌫
f(1)
A
f (1) · ⌫

f(2)
A
f (2) · · · ⌫

f(C)
A
f (C ) .

In other words, the measurement {�A} is C
p

2X-close to the product of the {⌫8
A8
}, in any order.

Furthermore,

⌫
f(1)
A
f (1) · ⌫

f(2)
A
f (2) · · · ⌫

f(C)
A
f (C ) ⇡2C

p
2X
⌫
d(1)
A
d(1) · ⌫

d(2)
A
d(2) · · · ⌫

d(C)
A
d(C )

for all permutations d,f 2 (C .

Proof. We first argue that

�A ⇡
C

p
2X
⌫

1

A1
· ⌫2

A2
· · · ⌫C

AC
.

Using Theorem 2.13 we get that for all 8 2 [C],

�[A 7!A8 |2] ⇡p2X
⌫
8

A
. (2.5.1)

Using Theorem 2.16 we can right-multiply Equation (2.5.1) for 8 = 1 by the measurement �[A 7!A2:3]

to deduce

�[A 7!A1] · �[A 7!A2] ⇡p2X
⌫

1

A1
· �[A 7!A2] (2.5.2)
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Using using Theorem 2.16 again we get that the right hand side of Equation (2.5.2) is
p

2X-close

to ⌫1

A1
· ⌫2

A2
, and therefore via the triangle inequality we get

�[A 7!A1] · �[A 7!A2] ⇡2

p
2X
⌫

1

A1
· ⌫2

A2
.

Notice that since � is projective, we have

�[A 7!A1] · �[A 7!A2] = �[A 7!(A1,A2)]

Thus �[A 7!(A1,A2)] ⇡2

p
2X
⌫

1

A1
· ⌫2

A2
. By repeatedly using Theorem 2.16, we deduce that

�A ⇡
C

p
2X
⌫

1

A1
· ⌫2

A2
· · · ⌫C

AC

as desired. The same argument holds with any other ordering of the ⌫8’s.

The “Furthermore” part of the lemma then follows from the triangle inequality. É

Constructing the "G

0
measurements. The first step is to show that, for fixed G, H, the {#G,H,8}

measurements approximately commute.

Fix 8, 9 2 [)]. Using Theorem 2.36 with � = #G,8, 9 , ⌫1 = #G,H,[(8) and ⌫2 = #G,H,[( 9) , we get

#
G,H,[( 9)
B

· #G,H,[(8)
A

⇡ #G,H,[(8)
A

· #G,H,[( 9)
B

. (2.5.3)

The next step is to deduce that the marginalizations of the #G,8, 9 measurements commute. Since

#
G,H,[(8)
A

⇡ #G,8,:[(08 ,0:) 7!08 |A] and #G,H,[( 9)
B

⇡ #G, 9 ,:[(0 9 ,0:) 7!0 9 |B] for all : 2 [)]. Thus, using Theorem 2.16
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twice we get

#
G,H,[( 9)
B

· #G,H,[(8)
A

⇡ #G,H,[( 9)
B

· #G,8,:[(08 ,0:) 7!08 |A] ⇡ #
G, 9 ,:

[(0 9 ,0:) 7!0 9 |B] · #
G,8,:

[(08 ,0:) 7!08 |A]

and similarly we get

#
G,H,[(8)
A

· #G,H,[( 9)
B

⇡ #G,8,:[(08 ,0:) 7!08 |A] · #
G, 9 ,:

[(0 9 ,0:) 7!0 9 |B] .

Using the triangle inequality and Equation (2.5.3), we get for all G 2 X and 8, 9 , : 2 [)],

#
G, 9 ,:

[(0 9 ,0:) 7!0 9 |B] · #
G,8,:

[(08 ,0:) 7!08 |A] ⇡ #
G,8,:

[(08 ,0:) 7!08 |A] · #
G, 9 ,:

[(0 9 ,0:) 7!0 9 |B]

Fix an arbitrary : 2 [)] and define

#
G,8

A
= #G,8,:[(08 ,0:) 7!08 |A] .

Fix an G 2 X. We invoke the Pasting Lemma (Theorem 2.18) on the set of measurements

{#G,8}
82[)] , and obtain a projective measurement "G = {"G

0
} with outcomes in {0, 1}) such that

for all 8 2 [)],

"
G

[0 7!08 |A] ⇡ #
G,8

A
.

Furthermore, by the triangle inequality, for all H 2 X we have that

"
G

[0 7!08 |A] ⇡ #
G,H,[(8)
A

. (2.5.4)
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Via the same arguments as above we have that #G,8
A
⇡ #H,G,_(8)

A
, which means that

"
G

[0 7!08 |A] ⇡ #
H,G,_(8)
A

.

Constructing the "G,H

c
measurements. Fix G, H 2 X and 8, 9 , : 2 [!]. Using Theorem 2.36

with � = #
G,H,8, 9 ,: , ⌫1 = #

G,H,8, ⌫2 = #
G,H, 9 , and ⌫3 = #

G,H,: we get that the product of #G,H,8
A

,

#
G,H, 9

B
, and #G,H,:

C
(using any ordering) is close to #G,H,8, 9 ,: .

In particular, we have

#
G,H,8

A
· #G,H, 9

B
⇡ #G,H, 9

B
· #G,H,8

A
.

Using the Pasting Lemma on the set of measurements {#G,H,8}, we obtain a projective measurement

"
G,H = {"G,H

c
} with outcomes in {0, 1}' (i.e. proof strings) such that

"
G,H

[c 7!c8 |A] ⇡ #
G,H,8

A
.

Using Theorem 2.16 repeatedly, we get that for all 8, 9 , : 2 [!],

"
G,H

[c 7!c8 |A] · "
G,H

[c 7!c 9 |B] · "
G,H

[c 7!c: |C] ⇡ #
G,H,8

A
· "G,H

[c 7!c 9 |B] · "
G,H

[c 7!c: |C]

⇡ #G,H,8
A

· #G,H, 9
B

· "G,H

[c 7!c: |C]

⇡ #G,H,8
A

· #G,H, 9
B

· #G,H,:
C

⇡ #G,H,8, 9 ,:
A,B,C

where the last approximation follows from our earlier application of Theorem 2.36. Since "G,H

c
is
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projective, we have that

"
G,H

[c 7!(c8 ,c 9 ,c:) | (A,B,C)] ⇡ #
G,H,8, 9 ,:

A,B,C
. (2.5.5)

We now relate the "G,H measurements to the "G measurements constructed previously. Using

the triangle inequality with Equation (2.5.4) we get for all G, H 2 X and 9 2 [)],

"
G,H

[c 7!c
[ ( 9 ) |A] ⇡ "

G

[0 7!0 9 |A] (2.5.6)

and similarly

"
G,H

[c 7!c
_( 9 ) |A] ⇡ "

H

[0 7!0 9 |A] . (2.5.7)

Before proceeding we prove a utility lemma that allows us to argue that if all the marginaliza-

tions of projective measurements are close, then the original measurements must be close.

Lemma 2.37. Let � and ⌫ be projective measurements with outcomes in {0, 1} such that for all

8 2 [ ], we have �[A 7!A8] ⇡^ ⌫[A 7!A8] . Then

�A ⇡ ^ ⌫A .

Proof. We prove this inductively on the prefix length of A. For the base case C = 1, we have

that �[A 7!A1] ⇡^ ⌫[A 7!A1] by assumption. Let the inductive hypothesis be that for some C � 1,

�[A 7!AC ] ⇡C^ ⌫[A 7!AC ] where AC denotes the first C bits of A. Then using Theorem 2.16 twice, we

get that

�[A 7!AC ] · �[A 7!AC+1] ⇡C^ ⌫[A 7!AC ] · �[A 7!AC+1] ⇡^ ⌫[A 7!AC ] · ⌫[A 7!AC+1]
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which, via the triangle inequality, implies that

�[A 7!AC+1] ⇡C^ ⌫[A 7!AC+1]

where we used the fact that the � and ⌫ measurements are projective. By induction, this statement

is true for all C, and since �[A 7!A ] = �A and ⌫[A 7!A ] = ⌫A , we conclude the proof. É

Applying Theorem 2.37 to Equations (2.5.6) and (2.5.7) and interpreting the outcome of the

"
G,H measurement as a triple (0, 1,F) 2 {0, 1}) ⇥ {0, 1}) ⇥ {0, 1}! , we get

"
G,H

[(0,1,F) 7!0] ⇡ "
G

0
(2.5.8)

"
G,H

[(0,1,F) 7!1] ⇡ "
H

1
. (2.5.9)

Using Theorem 2.16 several times with Equations (2.5.8) and (2.5.9) we get

"
G,H

[(0,1,F) 7!0] · "
G,H

[(0,1,F) 7!1] · "
G,H

[(0,1,F) 7!0] ⇡ "
G

0
· "G,H

[(0,1,F) 7!1] · "
G,H

[(0,1,F) 7!0]

⇡ "G

0
· "H

1
· "G,H

[(0,1,F) 7!0]

⇡ "G

0
· "H

1
· "G

0

and thus

"
G,H

[(0,1,F) 7!(0,1)] ⇡ "
G

0
· "H

1
· "G

0
. (2.5.10)
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Evaluating the probability of success of the "G measurements. Define the tracial synchronous

strategy ✓ = (g, {"G}) for game ⌧. Its success probability can be lower-bounded as follows:

l(⌧,✓) = E
G,H

’
0,1

⇡ (G, H, 0, 1) · g("G

0
"
H

1
)

= E
G,H

’
0,1

⇡ (G, H, 0, 1) · g("G

0
· "H

1
· "G

0
)

= E
G,H

’
0,1

⇡ (G, H, 0, 1) ·
⇣
g

⇣
"
G,H

[(0,1,F) 7!(0,1)]

⌘
+ g

⇣
"
G,H

[(0,1,F) 7!(0,1)] � "
G

0
"
H

1
"
G

0

⌘⌘

� E
G,H

’
0,1

⇡ (G, H, 0, 1) · g
⇣
"
G,H

[(0,1,F) 7!(0,1)]

⌘
� E
G,H

’
0,1

���g ⇣"G,H

[(0,1,F) 7!(0,1)] � "
G

0
"
H

1
"
G

0

⌘���

We bound the second term first. From Theorem 2.13 applied to Equation (2.5.10) we get

that "G,H

[(0,1,F) 7!(0,1)] 'X "
G

0
· "H

1
· "G

0
for some proper error function X = X(Y). We then apply

Theorem 2.15 to get that

E
G,H

’
0,1

���g ⇣"G,H

[(0,1,F) 7!(0,1)] � "
G

0
"
H

1
"
G

0

⌘���  2X .
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Next, we evaluate

E
G,H

’
0,1

⇡ (G, H, 0, 1) · g
⇣
"
G,H

[(0,1,F) 7!(0,1)]

⌘

= E
G,H

’
0,1,F

⇡ (G, H, 0, 1) · g
⇣
"
G,H

0,1,F

⌘

= E
G,H

’
0,1,F

1[9F0 : (0, 1,F0) satisfies iG,H] · g
⇣
"
G,H

0,1,F

⌘

� E
G,H

’
0,1,F

1[(0, 1,F) satisfies iG,H] · g
⇣
"
G,H

0,1,F

⌘

= 1 � E
G,H

’
0,1,F

1[(0, 1,F) does not satisfy iG,H] · g
⇣
"
G,H

0,1,F

⌘

where in the second line we use the conclusion of Theorem 2.33 that since TIME⇡  ) , we have

⇡ (G, H, 0, 1) = 1 if and only if there exists a satisfying assignment (0, 1,F0) for the Cook-Levin

formula iG,H.

Via the union bound, the probability that c = (0, 1,F) does not satisfy iG,H is at most the sum,

over all 8, 9 , : 2 [!], that (c8, c 9 , c: ) does not satisfy a clause in iG,H (if there exists such a clause).

Thus we have

E
G,H

’
0,1,F

1[(0, 1,F) unsat. iG,H] · g
⇣
"
G,H

0,1,F

⌘
 E
G,H

’
8, 9 ,:

’
c

1[(c8, c 9 , c: ) unsat. iG,H] · g
⇣
"
G,H

c

⌘

We can now relate this quantity to the success probability of ✓ans in the answer-reduced game

⌧
ans. Let \ denote the probability that one of the players receives a question bG = (6, ?) of the form

6 = (G, H) and ? = (8, 9 , :), and the other player receives a question bH = (60, ?0) of the form 6
0 = G

and ? 2 {8, 9 , :}. In this situation, by the design of the decider (see Section 2.5.2), the verifier

checks whether the player who got question bG responds with proof bits (c8, c 9 , c: ) that satisfy a
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corresponding clause in iG,H. Thus, since the overall success probability of the strategy ✓ans in the

game ⌧ans is at least 1 � Y, it must be that conditioned on a player receiving question of the form

bG = (G, H, 8, 9 , :), their answer does not satisfies a corresponding clause in the formula iG,H (if one

exists) with probability at most Y/\. In other words:

E
G,H,8, 9 ,:

’
c8 ,c 9 ,c:

1[(c8, c 9 , c: ) unsat. iG,H] · g(#G,H,8, 9 ,:c8 ,c 9 ,c:
)  Y/\.

Multiplying both sides by !3, we get that

E
G,H

’
8, 9 ,:

’
c8 ,c 9 ,c:

1[(c8, c 9 , c: ) unsat. iG,H] · g(#G,H,8, 9 ,:c8 ,c 9 ,c:
)  !3

Y/\ .

Using Theorem 2.13 with Equation (2.5.5), we get that for every 8, 9 , : 2 [!] and on average over

G, H,

"
G,H

[c 7!(c8 ,c 9 ,c:) |A,B,C] 'a #
G,H,8, 9 ,:

A,B,C

for some proper error function a = a(Y). Then using Theorem 2.15 we get that

E
G,H

’
A,B,C

���g ⇣"G,H

[c 7!(c8 ,c 9 ,c:) |A,B,C] � #
G,H,8, 9 ,:

A,B,C

⌘���  2a
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for every 8, 9 , : 2 [!]. Putting everything together, we find that

E
G,H

’
8, 9 ,:

’
c

1[(c8, c 9 , c: ) unsat. iG,H] · g
⇣
"
G,H

c

⌘

 E
G,H

’
8, 9 ,:

’
c8 ,c 9 ,c:

1[(c8, c 9 , c: ) unsat. iG,H] · g(#G,H,8, 9 ,:c8 ,c 9 ,c:
) + 2a

 !3

⇣
Y

\

+ 2a

⌘
.

Let Z = !3

⇣
Y

\
+ 2a

⌘
+ 2X. Then we deduce that

l(⌧,✓) � 1 � Z .

Since X, a are proper error functions of Y, so is Z . Thus Z ! 0 as Y ! 0. Furthermore, the strategy

✓ is finite-dimensional if and only if ✓ans is finite-dimensional. Thus, suppose that lB
C
(⌧ans) = 1

for C = @ (resp. for C = 2>). This implies that there is a sequence of finite-dimensional (resp.

commuting operator) strategies ✓ans such that l(⌧ans
,✓ans) approaches 1. This in turn implies the

existence of a sequence of finite-dimensional (resp. commuting operator) strategies ✓ such that

l(⌧,✓) approaches 1, and thus lB
C
(⌧) = 1. Taking the contrapositive, we conclude that

l
B

C
(⌧) < 1 =) l

B

C
(⌧ans) < 1 .

This finishes the proof of the Proposition. É
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2.5.5 Proof of Theorem 2.32

We now prove the main result of this section, Theorem 2.32. Fix V 2 N. The algorithm

A�=BF4A'43D2C8>=V, on input (⇡,⇠) where ⇡ is a 5-input Turing machine and ⇠ is a 3-input

Turing machine, computes the descriptions of 5-input and 3-input Turing machines ⇡ans
,⇠

ans

respectively as follows. Let &(=) = log
V

= and ) (=) = =V.

Question checker ⇠ans. At a high level, the Turing machine ⇠ans, on input (=,bG,bH) checks whether

the question pair (bG,bH) is nontrivial according to Table 2.5, where “⌧” in the table is supposed to

be the =-th game ⌧= of the sequence specified by the verifier � = (⇡,⇠), “⇡G,H” in the table is

supposed to be the Turing machine ⇡=,G,H which on input (0, 1) outputs ⇡ (=, G, H, 0, 1), and “)”

in the table is supposed to be ) (=).

In order to compute whether (bG,bH) (or (bH,bG)) is one of the question pairs specified by Table 2.5,

the Turing machine ⇠ans has to compute the question lengths of the =-th answer-reduced game

⌧
ans: it computes !=, the number of variables of a Cook-Levin formula corresponding to a Turing

machine with description length |⇡ | +$ (log =) +2&(=). (This is the description length of a Turing

machine ⇡=,G,H, which is ⇡ with (=, G, H) “hardwired” into it.) It then checks whether bG,bH are

(binary encodings of) elements of ({0, 1}&(=) [ {0, 1}2&(=)) ⇥ ( [!=] [ [!=]2 [ [!=]3), which is

the question alphabet of ⌧ans

=
. It not, then it outputs 0. At this point, the Turing machine ⇠ans has

ensured that (bG,bH) is a properly-formatted question pair in the =-th answer-reduced game ⌧ans

=
.

The Turing machine ⇠ans then attempts to parse (bG,bH) or (bH,bG) as one of the combinations

specified in Table 2.5 and outputs 1 if there is a match; otherwise it outputs 0. To determine

whether (G, H) 2 ({0, 1}&(=))2 is nontrivial for ⌧=, it computes whether ⇠ (=, G, H) = 1. This

concludes the description of ⇠ans.
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Decider ⇡ans. The Turing machine ⇡ans on input (=,bG,bH,b0,b1) first computes ⇠ans(=,bG,bH). If

the output is 0 (i.e. the question pair (bG,bH) is trivial), then the Turing machine ⇡ans accepts (i.e.

outputs 1). Otherwise, it continues. It computes != just like with ⇠ans, and then matches (bG,bH)
(resp. (bH,bG)) to one of the entries of the table. Since ⇠ans(=,bG,bH) = 1, there must be a match.

The Turing machine ⇡ans then evaluates whether the winning conditions (b0,b1) (resp. (b1,b0))
are satisfied according to Table 2.5. If the winning conditions are satisfied, then ⇡ans outputs 1

(accepts), otherwise it outputs 0 (rejects).

Now assume the conditions of Theorem 2.32; i.e., that � = (⇡,⇠) is a verifier for a sequence

of games ⌃� = (⌧=)=2N and

1. The questions of ⌧= have length at most &(=),

2. TIME⇠ (=)  &(=), and

3. TIME⇡ (=)  ) (=).

Now we argue that the output �ans = (⇡ans
,⇠

ans) is a verifier for a sequence of games ⌃�ans =

(⌧ans

=
)=2N satisfying the conclusions of Theorem 2.32.

Complexity of the question checker ⇠ans. The question checker ⇠ans for the answer-reduced

game first has to compute !=, the number of variables in the Cook-Levin formula corresponding

to ⇡=,G,H. This requires computing the description length of ⇡=,G,H, where G, H are questions in the

original game ⌧=, which by assumption has length at most &(=). It then has to check that the

questions (bG,bH) are properly formatted questions from the question alphabet of ⌧ans

=
, which takes

time poly(&(=), log !=). Then, it has to determine whether (bG,bH) matches one of the question
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pairs in Table 2.5, which includes running the question checker ⇠ for the original verifier �. Thus

overall we have TIME⇠ans (=)  poly( |⇡ |, |⇠ |,&(=), log) (=), log =) = poly( |⇡ |, |⇠ |, V, log
V

=).

Complexity of the decider ⇡ans. The time complexity of the answer-reduced verifier ⇡ans in-

cludes the complexity of computing the question checker ⇠ans(=, G, H) and computing the number

of variables !=. It also includes the complexity of computing a clause of the Cook-Levin formula

i=,G,H, which involves invoking the algorithm A⇠>>:!4E8= on the input (⇡=,G,H,) (=), 2) (=), 8, 9 , :)

for some variable indices 8, 9 , : 2 [!=], where (G, H) are questions for the original game⌧= (which

have length&(=) by assumption). Computing the description of ⇡=,G,H takes time poly( |⇡ |, |G |, |H |, log =)

because it involves “hard-wiring” the integer = and strings G, H into the description of ⇡. Thus

it takes at most poly( |⇡ |,&(=), log) (=), log =) to compute a clause. Computing the [(·) and

_(·) maps also take time at most poly(log) (=)) (because it requires computing ) (=)). Thus,

in total, the complexity of the answer-reduced verifier is poly( |⇡ |, |⇠ |,&(=), log) (=), log =) =

poly( |⇡ |, |⇠ |, V, log
V

=).

Completeness and Soundness. Completeness follows from Theorem 2.34. Soundness follows

from Theorem 2.35.

This completes the proof of Theorem 2.32.

2.6 Compressions of nonlocal games and their applications

In this section we describe the compression theorems and some of their applications.
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2.6.1 Gapless compression

First we present the main technical result of this paper, which is a gapless compression theorem

for both the quantum and commuting operator value of nonlocal games. This theorem statement is

a formalization of Theorem 2.3 from the introduction.

Theorem 2.38 (Gapless compression of nonlocal games). For all U 2 N there is a polynomial

time algorithm A⌧0?;4BB⇠><?A4BB
U

that takes as input a pair of Turing machines (⇡,⇠) and

outputs a pair of Turing machines (⇡0,⇠0) such that the following holds. If � = (⇡,⇠) is a

verifier for a sequence of games ⌃� = (⌧=)=2N and =0 2 N is an integer such that for all = � =0,

max

n
TIME⇠ (=),TIME⇡ (=)

o
 =U , (2.6.1)

then �0 = (⇡0,⇠0) is a verifier for a sequence of games ⌃�0 = (⌧0
=
)=2N with the following

properties. There exist an integer W = poly(U) and =0
0
= poly(WW, =0) such that for all = � =0

0
,

1. (Complexity bounds)

max {TIME⇠0 (=),TIME⇡
0 (=)}  log

W

= .

2. (Completeness) For all oracularizable synchronous strategies ✓ for⌧=, there exists an orac-

ularizable synchronous strategy ✓0 for ⌧0
=

such that

l(⌧0
=
,✓0) � 1

2
+ 1

2
l(⌧=,✓) .

Furthermore, if ✓ is finite dimensional, so is ✓0.
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3. (Soundness) For all C 2 {@, 2>} we have

l
B

C
(⌧=) < 1 =) l

B

C
(⌧0

=
) < 1 .

4. (Entanglement bound)

E(⌧0
=
, 1) � max

�
E(⌧=, 1), 22=

 
.

We prove this by combining the question reduction and answer reduction transformations of

Sections 2.4 and 2.5. The algorithm A⌧0?;4BB⇠><?A4BB
U

is presented below. The parameter V

in Algorithm 5 is defined to be the same V = poly(U) from Theorem 2.27.

1 Input: ⇡,⇠.

2 Compute (⇡intro
,⇠

intro) = A&D4BC8>='43D2C8>=
U
(⇡,⇠).

3 Compute (⇡0,⇠0) = A�=BF4A'43D2C8>=V (⇡intro
,⇠

intro).

4 Return (⇡0,⇠0).

Pseudocode 5: A⌧0?;4BB⇠><?A4BB
U

Proof. First, it is clear that A⌧0?;4BB⇠><?A4BB
U

runs in polynomial time in the description

length of the input (⇡,⇠), because the algorithm A&D4BC8>='43D2C8>=
U

runs in time poly( |⇡ |, |⇠ |)

and the algorithm A�=BF4A'43D2C8>=V runs in time poly( |⇡intro |, |⇠intro |) = poly( |⇡ |, |⇠ |).

This last equality uses that max{|⇡intro |, |⇠intro |}  poly( |⇡ |, |⇠ |) because the running time of

A&D4BC8>='43D2C8>=
U

is an upper bound on the length of the descriptions of ⇡intro and ⇠intro.

Next, suppose that � = (⇡,⇠) is such that the time bound of (2.6.1) is satisfied. Then, the

complexity bounds on (⇡intro
,⇠

intro) given by the conclusion of Theorem 2.27 are exactly those

that satisfy the conditions of Theorem 2.32. Thus, the output (⇡0,⇠0) of A�=BF4A'43D2C8>=V (⇡intro
,⇠

intro)
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satisfy the conclusions of Theorem 2.32 (with W = poly(V) = poly(U)) and thus this establishes

the desired complexity bounds on the output verifier �0.

Define the integers V = poly(U),=intro

0
= poly(V, =0) as given by Theorem 2.27. Then, define

the integers W = poly(V), =ans

0
= poly(WW, =intro

0
) = poly(WW, =0) as given by Theorem 2.32. Define

=
0
0
= max{=0, =

intro

0
, =

ans

0
}.

We now establish the completeness property of �0. Fix an integer = not less than =0
0
. Let ✓ be

an oracularizable synchronous strategy for ⌧=. By the completeness of Question Reduction, this

implies there is an oracularizable synchronous strategy ✓8=CA> for ⌧ intro

=
such that

l(⌧ intro

=
,✓8=CA>) � l(⌧=,✓) .

Then, by the completeness of Answer Reduction, there is an oracularizable synchronous strategy

✓0 for ⌧0
=

such that

l(⌧0
=
,✓0) � 1

2
+ 1

2
l(⌧ intro

=
,✓8=CA>) � 1

2
+ 1

2
l(⌧=,✓) .

Furthermore, if ✓ is finite-dimensional, then so are ✓intro and ✓0.

We establish the soundness property of �0 by combining the soundness guarantees of Question

Reduction and Answer Reduction:

l
B

C
(⌧=) < 1 =) l

B

C
(⌧ intro

=
) < 1 =) l

B

C
(⌧0

=
) < 1.

Finally, we establish the entanglement bound property by combining the entanglement bounds
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from Question Reduction and Answer Reduction

E(⌧0
=
, 1) � E(⌧8=CA>

=
, 1) � max

�
E(⌧=, 1), 22=

 
.

É

2.6.2 Super compression

The gapless compression procedure of Theorem 2.38 transforms uniform sequences of games

(⌧1,⌧2, . . .) to another uniform sequence (⌧0
1
,⌧
0
2
, . . .) that is, in a sense, exponentially more

efficient. Using this we prove a super compression procedure, which transforms a sequence of

games (⌧1,⌧2, . . .) into a single game ⌧0 such that lB
C
(⌧0) = 1 if and only if lB

C
(⌧=) = 1 for all

sufficiently large = and C 2 {@, 2>}.

Theorem 2.39 (Super compression of nonlocal games). For all U 2 N there is a polynomial time

algorithm A(D?4A⇠><?A4BB
U

that takes as input a pair of Turing machines (⇡,⇠) and outputs

a pair of Turing machines (⇡super
,⇠

super) such that the following holds. If � = (⇡,⇠) is a verifier

for a sequence of games ⌃� = (⌧=)=2N and =0 2 N is an integer such that for all = � =0,

max

n
TIME⇠ (=),TIME⇡ (=)

o
 =U , (2.6.2)

then �super = (⇡super
,⇠

super) is a verifier for a sequence of games ⌃�super = (⌧super

=
)=2N such

that there exist integers _ = $ (U) and ^ = poly( |⇡ |, |⇠ |, U, =0, _
poly(_)) and the ^-th game in the

sequence, ⌧super

^
, satisfies the following properties:
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1. (Complexity bounds)

max {TIME⇠super (^),TIME⇡
super (^)}  ^_ .

2. (Completeness for C = @) If for all = � ^ we have

sup

finite-dim osync ✓=
l(⌧=,✓=) = 1

where the supremum is over finite-dimensional oracularizable synchronous strategies ✓=,

then lB
@
(⌧super

^
) = 1.

3. (Completeness for C = 2>) If for all = � ^, there exists an oracularizable synchronous

strategy ✓= for ⌧= such that l(⌧=,✓=) = 1, then lB
2>
(⌧super

^
) = 1.

4. (Soundness) For all C 2 {@, 2>}, if there exists an = � ^ such that lB
C
(⌧=) < 1, then

l
B

C
(⌧super

^
) < 1.

5. (Entanglement lower bound) There is no finite-dimensional strategy✓super

^
such thatl(⌧super

^
,✓

super

^
) =

1.

Note that, unlike Theorem 2.38, the conclusions of Theorem 2.39 pertain to a single game in

the output sequence ⌃�super = (⌧super

=
)= of games, namely, ⌧super

^
.

At a high level, the games (⌧super

=
)= has the following structure: with probability 1

2
, the veri-

fier in the game ⌧super

=
plays the game ⌧=. With the remaining probability the verifier plays the

game ⌧0
=+1

where (⌧0
=
)= is the compression of (⌧super

=
)= using A⌧0?;4BB⇠><?A4BB from Theo-

rem 2.38. Note the self-referentiality! We now proceed with the proof.
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Proof. Let (⇡,⇠) be a pair of Turing machines and let U be such that eq. (2.6.1) is satisfied. We

first define, for every integer _ 2 N, a pair of Turing machines (⇡super

_
,⇠

super

_
) whose descriptions

are given below in Algorithms ??. We will then identify a special _⇤ and define the algorithm

A(D?4A⇠><?A4BB
U

to output the descriptions of (⇡super

_
⇤ ,⇠

super

_
⇤ ).

Note that the descriptions of ⇡super

_
,⇠

super

_
are self-referential: they perform computations on

their own descriptions. It is possible to define Turing machines in this manner; one can appeal to

either Kleene’s Recursion Theorem/Roger’s Fixed Point Theorem to argue that these descriptions

are well-defined (see, e.g. [71, Chapter 14] for a modern explanation). The description lengths of

these Turing machines satisfy

max{|⇡super

_
|, |⇠super

_
|}  poly(_, |⇡ |, |⇠ |) .

195



1 Input: =, G, H, 0, 1

2 If the following takes more than =_ steps, then automatically reject.

3 Parse G = (CG ,bG) and H = (CH,bH), where CG , CH 2 {0, 1}.

4 if CG = CH = 0 then

5 If ⇡ (=,bG,bH, 0, 1) accepts, then accept. Otherwise, reject.

6 end

7 else if CG = CH = 1 then

8 Compute (⇡0,⇠0) = A⌧0?;4BB⇠><?A4BB
_
(⇡super

_
,⇠

super

_
).

9 If ⇡0(= + 1,bG,bH, 0, 1) accepts, then accept. Otherwise, reject.

10 end

11 On all other inputs, accept.

Pseudocode 6: Specification of Turing machine ⇡super

_
.
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1 Input: =, G, H

2 If the following takes more than =_ steps, then automatically reject.

3 Parse G = (CG ,bG) and H = (CH,bH), where CG , CH 2 {0, 1}.

4 if CG = CH = 0 then

5 Output ⇠ (=,bG,bH).
6 end

7 else if CG = CH = 1 then

8 Compute (⇡0,⇠0) = A⌧0?;4BB⇠><?A4BB
_
(⇡super

_
,⇠

super

_
).

9 Output ⇠0(= + 1,bG,bH).
10 end

11 On all other inputs, output 1.

Pseudocode 7: Specification of Turing machine ⇠super

_
.

First, observe that by construction both ⇡
super

_
and ⇠super

_
, when given index =, run in time

at most =_. Thus, (⇡super

_
,⇠

super

_
) satisfy the complexity conditions of Theorem 2.38 for the algo-

rithm A⌧0?;4BB⇠><?A4BB
_
, and thus the output Turing machines (⇡0,⇠0) satisfy the complexity

bounds in the conclusion of A⌧0?;4BB⇠><?A4BB
_
, namely, that there exists W = poly(_) such

that for all = 2 N,

max{TIME⇡
0 (=),TIME⇠0 (=)}  log

W

= .

The next claim shows that we can find an integer _⇤ such that for sufficiently large =, the Turing

machines ⇡super

_
⇤ ,⇠

super

_
⇤ never encounter the time-out.

Claim 1. There exist integers _⇤ = $ (U), ^ = poly( |⇡ |, |⇠ |, U, =0, _
poly(_)) such that for all = � ^,
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the Turing machines ⇡super

_
⇤ ,⇠

super

_
⇤ when given index = never reject due to exceeding the =_

⇤
time-

out.

Proof. Next, the time complexity of ⇡super

_
(resp. ⇠super

_
) without the automatic =_ timeout is poly-

nomial in the complexity of running the decider ⇡/checker ⇠, computing A⌧0?;4BB⇠><?A4BB
_
,

and running the decider ⇡0 (resp. checker ⇠0). By our assumptions on (⇡,⇠), when = �

=0 we have the bounds from eq. (2.6.1). The algorithm A⌧0?;4BB⇠><?A4BB
_

runs in time

poly( |⇡super

_
|, |⇠super

_
|, _) = poly( |⇡ |, |⇠ |, _). Putting this together with the complexity bounds

on ⇡
0 (resp. ⇠

0), we have that the complexity of ⇡super

_
(resp. ⇠

super

_
), without the automatic

timeout, is at most

f(=U · |⇡ | · |⇠ | · _ · log
W

=)f (2.6.3)

for all = � =0, where f 2 N is some universal constant.

We can find integers _⇤, ^ 2 N such that each component of the expression in (2.6.3) is at most

=
_
⇤ for all = � ^. Namely:

• By taking _⇤ � f · U and ^ � f, we have that f=U·f  =_⇤ for all = � ^.

• By taking _⇤ � f and ^ � |⇡ | · |⇠ | · _⇤, we have that ( |⇡ | · |⇠ | · _⇤)f  =_⇤ for all = � ^.

• By taking _⇤ � 2 and ^ � (W · f)W·f where W = poly(_⇤), we have that log
W·f (=)  =_⇤ for

all = � ^.

Putting everything together, by setting _⇤ = 2fU and ^ = f · U · |⇡ | · |⇠ | · _⇤ · (W · f)W·f · =0, we

get that the Turing machines ⇡super

_
⇤ and ⇠super

_
⇤ run in time that is less than =_⇤ for all = � ^.

É
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We define the algorithm A(D?4A⇠><?A4BB
U
, on input (⇡,⇠), to compute _⇤ = $ (U) and

output the descriptions of (⇡super

_
⇤ ,⇠

super

_
⇤ ). The algorithm clearly runs in polynomial time.

By construction the Turing machines (⇡super

_
⇤ ,⇠

super

_
⇤ ) satisfy the desired time complexity bound

on index = = ^. What remains is to argue completeness and soundness. For notational simplicity

we fix _⇤ and let (⇡super
,⇠

super) = (⇡super

_
⇤ ,⇠

super

_
⇤ ).

Fix C 2 {@, 2>}. Since the Turing machines ⇡super
,⇠

super never reject due to the time-out, we

have that the verifier in the game ⌧super

=
automatically accepts with probability 1

2
(when CG < CH),

plays the game ⌧= with probability 1

4
(when CG = CH = 0), and plays the game ⌧0

=+1
with probability

1

4
(when CG = CH = 1) where ⌧0

=+1
is the (= + 1)-st game in the sequence of games output by

A⌧0?;4BB⇠><?A4BB on input (⇡super
,⇠

super).

We first prove completeness for C = @. Suppose for all = � ^ we have

sup

finite-dim osync ✓=
l(⌧=,✓=) = 1. (2.6.4)

Define

2= = sup

finite-dim osync ✓super

=

l(⌧super

=
,✓

super

=
)

and define 2 = inf=�^ 2=. We aim to prove that 2 = 1; this would imply that lB
@
(⌧super

=
) = 1 for

all = � ^. Suppose this were not true, so that 0  2 < 1. We now show that 2= � 7+2
8

> 2 for all

= � ^, which would contradict the fact that 2 is the infimum of the sequence (2=)=�^.

For all < � ^, let: (a) ✓< be a finite-dimensional oracularizable synchronous (“finite-dim

osync”) strategy for ⌧<, (b) let ✓super

<
denote a finite-dim osync strategy for ⌧super

<
whose value is

at least 2, and (c) let ✓0
<

denote the finite-dim osync strategy for ⌧0
<

, given by the completeness
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property of Theorem 2.38, whose value satisfies

l(⌧0
<
,✓0

<
) � 1

2
+ 1

2
l(⌧super

<
,✓

super

<
) � 1 + 2

2
. (2.6.5)

We now construct, for all = � ^, a finite-dim osync strategy ◆= for ⌧super

=
that has value at least

l(⌧super

=
,◆=) �

1

2
+ 1

4
l(⌧=,✓=) +

1

4
l(⌧0

=+1
,✓0

=+1
) � 5 + 2

8
+ 1

4
l(⌧=,✓=) (2.6.6)

where the second inequality follows from eq. (2.6.5). The strategy ◆= is constructed as follows.

Its tracial state is the tensor product of the tracial states from ✓= and ✓0
=+1

; since both of these

strategies are finite-dimensional so is the strategy ◆=. When a player gets question G = (0,bG), they

perform the measurement corresponding to question bG from the strategy ✓=. When a player gets

question G = (1,bG), they perform the measurement corresponding to question bG from the strategy

✓0
=
. Thus when both players get questions whose first bit is 0, they are essentially playing the game

⌧=, and when they both get questions whose first bit is 1, they are essentially playing the game

⌧
0
=+1

. Taking the supremum of the right-hand side of eq. (2.6.6) over finite-dim osync strategies

✓= for ⌧= and using eq. (2.6.4), we get that 2= � 7+2
8

, which yields a contradiction as desired.

The proof of completeness for C = 2> is virutally identical, except we consider all oracularizable

synchronous strategies, not just finite-dimensional ones.

We now prove the soundness property. Let C 2 {@, 2>}. Let =⇤ � ^ be such that lB
C
(⌧=

⇤) < 1.

For all < � ^, by construction of the game ⌧super

<
we have

l
B

C
(⌧super

<
) = 1

2
+ 1

4
l
B

C
(⌧<) +

1

4
l
B

C
(⌧0

<+1
) ,
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so thereforelB
C
(⌧super

=
⇤ ) < 1. By the soundness property of Theorem 2.38, this means thatlB

C
(⌧0

=
⇤) <

1, and thereforelB
C
(⌧super

=
⇤�1

) < 1. This in turn implies thatlB
C
(⌧super

=
⇤�2

) < 1, and so on, until we obtain

l
B

C
(⌧super

^
) < 1, the desired conclusion.

Finally, we prove that there is no finite-dimensional perfect strategy for ⌧super

^
. Suppose for

contradiction that there a 3-dimensional strategy ✓
super

^
such that l(⌧super

^
,✓

super

^
) = 1. Then in

particular it must give rise to a 3-dimensional strategy ✓0
^+1

such that l(⌧0
^+1

,✓0
^+1

) = 1 (simply

by taking the measurement operators corresponding to questions G = (1,bG)). By the entanglement

bound of Theorem 2.38, it must be that the dimension 3 is at least E(⌧super

^+1
, 1). If this quantity

is infinite, then we arrive at a contradiction and are done. Otherwise, there is a 3-dimensional

perfect strategy ✓
super

^+1
for ⌧super

^+1
. Again, this must imply a 3-dimensional perfect strategy for

⌧
0
^+2

. Continuing in this fashion, we either obtain a contradiction or deduce the existence of a

3-dimensional perfect strategy for ⌧0
<

for all < � ^. On the other hand, the entanglement bound

of Theorem 2.38 also implies that E(⌧0
<
, 1) � 2

2<. Thus, 3 � 2
2< for all < � ^, contradicting the

assumption that 3 is finite. É

2.6.3 ⇧1-completeness of the exact 2>-value problem

As a warmup, we present an application of the super compression procedure to show that the

exact 2>-value problem (i.e. determining whether l2> (⌧) = 1) is complete for ⇧1, also known

as coRE. This was first shown by Slofstra [13] using very different techniques based on group

theory.

Theorem 2.40. The exact 2>-value problem is complete for ⇧1.

Proof. The easy direction is that the exact 2>-value problem is contained in ⇧1 because one can
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express it as a ⇧1 sentence: for all nonlocal games ⌧, l2> (⌧) = 1 if and only if 8G q(G) where

q(G) is a computable predicate that is true when the G-th level of the semidefinite programming

hierarchy of [44, 45] computes an upper bound of 1 on l2> (⌧). In other words, the best upper

bound on the commuting operator value of ⌧ computed by the G-th level of the hierarchy is 1. If

this is true for all G, then this implies that l2> (⌧) = 1. On the other hand, if l2> (⌧) < 1, then

there exists a level G such that q(G) is false.

Now we turn to the other direction. To prove ⇧1-hardness, we reduce an arbitrary ⇧1 sentence

( = 8G q(G) to a nonlocal game ⌧ such that ( is true if and only if l2> (⌧) = 1.

Define the Turing machine )q that halts on the empty input if and only if the sentence ( is false:

1 for G 2 {0, 1}⇤ do

2 If q(G) is false then halt.

3 end

Pseudocode 8: Specification of )q.

Next, define the sequence of games⌃q = (⌧=)=2N with verifier � = (⇡,⇠), where⇠ (G, H) = 1

if and only if G = H, and where the decider ⇡ is defined as follows:

1 Input: =, G, H, 0, 1

2 If )q halts in = steps, reject.

3 If any of G, H, 0, 1 exceed = bits, reject.

4 If G = H but 0 < 1, reject.

5 Otherwise, accept.

Pseudocode 9: Specification of Turing machine ⇡.

Notice that max{TIME⇡ (=),TIME2 (=)}  $ (=), which is at most =2 for sufficiently large =.
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Furthermore, l2> (⌧=) = 1 if and only if the Turing machine )q does not halt in = steps. Fur-

thermore, if )q does not halt in = steps, then there exists an oracularizable synchronous (“osync”)

strategy ✓= such that l(⌧=,✓=) = 1: the strategy is to output a fixed answer no matter what the

question is.

We apply super compression to the family of games⌃q: the output of A(D?4A⇠><?A4BB
U
(⇡,⇠)

where U = 2 is a verifier (⇡super
,⇠

super) for a sequence of games ⌃super = (⌧super

=
)=2N such that

l
B

2>
(⌧super

^
) = 1 if and only if there exists an osync value-1 strategy ✓= for ⌧=, where ^ is defined

as in Theorem 2.39.

Thus if ( is true, then)q never halts, and there exists an osync strategy✓= such thatl(⌧=,✓=) =

1 for all = 2 N, and thus lB
2>
(⌧super

^
) = 1. On the other hand, if ( is false and )q does halt in some

time C, then lB
2>
(⌧=) < 1 for all = � C, which implies that lB

2>
(⌧super

^
) < 1.

By [58], since ⌧super

^
is a synchronous game, we have that lB

2>
(⌧super

^
) = 1 if and only if

l2> (⌧super

^
) = 1. This, combined with the fact that the mapping from the ⇧1 sentence ( to the

game ⌧super

^
is computable, implies that the exact 2>-value problem is ⇧1-hard.

É

Note that the exact same proof, considering @-type strategies rather than 2>-type strategies,

shows that the exact @-value problem is hard for ⇧1. While we improve this lower bound to ⇧2

in the next section, we note that this directly implies that the set of quantum correlations is not

closed, a result that was also established by Slofstra in [38].13 Again, the proof approaches are

quite different: his proof uses techniques from approximate representation theory as well as group
13Briefly, the set of quantum correlations on = inputs and : outputs, denoted by ⇠@ (=, :), is the (convex) set of all

vectors ?GH01 2 R=⇥=⇥:⇥: such that
?GH01 = hk |�G

0
⌦ ⌫H

1
|ki

for some dimension 3, some quantum state |ki 2 C3 ⌦ C3 , and some POVMs {�G
0
}, {⌫H

1
}.
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theory.

Corollary 2.41 ([38]). The set of quantum correlations is not closed.

Proof. Let ( be a true ⇧1 sentence. The construction of the game ⌧super

^
from ( in Theorem 2.40,

by Theorem 2.39, has the property that l@ (⌧super

^
) = 1 but there is no finite-dimensional strategy

✓ that actually achieves value 1 in the game.

É

2.6.4 ⇧2-completeness of the exact @-value problem

We now prove the main result of this paper, which is the ⇧2-completeness of the exact @-value

problem. As explained in Section 2.1.1, we combine our gapless compression theorem with a

consequence of the MIP⇤ = RE theorem from [14], which we state in the following theorem. In

the theorem, nonlocal games⌧ are represented via an integer = 2 N, and a pair of Turing machines

(⇡,⇠) where ⇡ represents the decider for ⌧ (so is a 4-input Turing machine) and ⇠ represents

the checker (so is a 2-input Turing machine). The game ⌧ is then defined to be (X,A,⇡) where

X = A = {0, 1}=. The checker ⇠, on input (G, H) 2 X⇥X, indicates whether (G, H) is trivial for ⌧.

Theorem 2.42 ([14]). There is a universal constant _Halt 2 N and algorithm A�0;C8=6⌧0<4

that takes as input the description of a ⌃1 sentence ( and outputs a tuple (⇡,⇠) for a nonlocal

game ⌧ such that

1. (Completeness) If ( is true, then

sup

finite-dim osync ✓
l(⌧,✓) = 1.
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2. (Soundness) If ( is false, then

l
B

@
(⌧) < 1.

3. (Complexity bounds) Letting |( | denote the description length of the sentence (, we have

max

n
TIME⇠ ,TIME⇡ ,TIMEA�0;C8=6⌧0<4(()

o
 $ ( |( |_Halt)

where TIME⇠ ,TIME⇡ denote the time complexities of⇠,⇡ (on any input), and TIMEA�0;C8=6⌧0<4(()

denotes the time complexity of A�0;C8=6⌧0<4 on input (.

Proof. This is a corollary of [14, Theorem 12.7] which reduces the Halting problem to deciding

whether the @-value of a nonlocal game is equal to 1 or at most 1/2. To obtain the present theorem,

we first observe that every ⌃1 sentence ( = 9G q(G) can be expressed as an equivalent instance of

the Halting problem: define the Turing machine "( that on the empty input, starts looping over all

G and evaluates q(G). If it finds an G such that q(G) is true, then it halts. Clearly ( is true if and

only if "( halts.

The game � corresponding to "( from [14, Theorem 12.7] is synchronous and the decider

complexity is at most some polynomial in the description length of (. However, the question

distribution ` of the game � is not uniform. Without loss of generality, assume that the question

and answer sets of � are represented by =-bit strings. Because the reduction from "( to � is

efficient, we have that = = poly( |( |).

The game ⌧ that we construct will be � but with a uniform distribution over all =-bit question

pairs (G, H). Whenever a sampled question pair (G, H) is not in the support of `, the decider ⇡ of

⌧ will automatically accept (and thus (G, H) is a trivial question). Otherwise, the decider from the

205



game � is invoked. The key thing to note is thatl@ (�) = 1 if and only ifl@ (⌧) = 1. Furthermore,

since ⌧ is a synchronous game (since � is a synchronous game), it holds that lB
@
(⌧) = 1 if and

only if l@ (⌧) = 1.

Finally, since determining the support of the question distribution of � can be done in poly( |( |)

time, we obtain a checker ⇠ for the game ⌧ that runs in poly( |( |) time. Thus, on input (, the

algorithm A�0;C8=6⌧0<4 can output the tuple (⇡,⇠) which satisfies the conclusions of the

theorem. É

We break up the proof of the ⇧2 completeness of the exact @-value problem into two parts.

First we show hardness.

Lemma 2.43. The exact @-value problem is hard for ⇧2.

Proof. Fix a ⇧2 sentence ( = 8G9H q(G, H) where q is a computable predicate. For every = 2 N

define the ⌃1 sentence

(= = 9H1, . . . , H=

=€
8=1

q(8, H8).

Thus the sentence ( is true if and only if the sentences (= are true for all = 2 N. Note that if (= is

true then (8 is true for all 8  = .

Using A�0;C8=6⌧0<4 we construct the sequence of games ⌃q = (⌧=)=2N with verifier � =

(⇡,⇠). Let

2= = sup

finite-dim osync ✓=
l(⌧=,✓=),

then these games have the property that 2= = 1 if and only if the sentence (= is true.
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1 Input: =, G, H, 0, 1

2 Compute the game decider and checker (⇡=,⇠=) for A�0;C8=6⌧0<4((=).

3 If ⇡= (G, H, 0, 1) accepts, then accept.

4 Otherwise, reject.

Pseudocode 10: Specification of Turing machine ⇡.

1 Input: =, G, H

2 Compute the game decider and checker (⇡=,⇠=) for A�0;C8=6⌧0<4((=).

3 Output ⇠= (G, H).

Pseudocode 11: Specification of Turing machine ⇠.

For large enough = the verifier is bounded by

max

n
TIME⇠ (=),TIME⇡ (=)

o
 =_Halt+1

since

max

n
TIME⇠= ,TIME⇡=

,TIMEA�0;C8=6⌧0<4((=)
o
 (=|( |)_Halt .

We apply super compression to the family of games⌃q: the output of A(D?4A⇠><?A4BB
U
(⇡,⇠)

where U = _Halt+1 is a verifier (⇡super
,⇠

super) for a sequence of games ⌃super = (⌧super

=
)=2N such

that lB
@
(⌧super

^
) = 1 if and only if 2= = 1 for all = � ^, where ^ is defined as in Theorem 2.39.

Therefore, lB
@
(⌧super

^
) = 1 if and only if the sentences (= are true for = � ^, which is equivalent

to the ⇧2 sentence ( being true. We have therefore reduced the problem of deciding an arbitrary
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⇧2 sentence to deciding the exact @-value problem. É

Finally, we argue that the exact @-value problem is contained in ⇧2.

Lemma 2.44. The exact @-value problem is in ⇧2.

Proof. We will state the exact @-value problem as a ⇧2 sentence. Fix a nonlocal game ⌧ then we

would like to decide if

sup

finite-dim ✓
l(⌧,✓) = 1.

Let S3

Y
be an Y-net for quantum strategies of dimension 3 2 N. This is a finite set, since strate-

gies of a fixed dimension form a compact set [72]. Let SY =
–
32N S3

Y
. Then we can equivalently

formulate the decision problem as

8Y 2 (0, 1] 9✓ 2 SY such that l(⌧,✓) > 1 � 2Y.

This in turn is equivalent to the ⇧2 sentence

8= 2 N 9✓ 2 S 1

=

such that l(⌧,✓) > 1 � 2

=

.

É

Putting the two together, we get:

Theorem 2.45. The exact @-value problem is complete for ⇧2.
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2.6.5 Necessity of compression

We will show how to compress nonlocal games given many-one reductions from arithmetical

hierarchy classes to the corresponding C-value problems for C 2 {@, 2>}. This shows that, in

a certain sense, compression theorems are necessary for proving the complexity lower bounds

indicated in Figure 2.1. In particular we construct super compression procedures (procedures that

map families of games to a single equivalent game).

The following theorem was proved in [54]:

Theorem 2.46. Assume that the approximate @-value problem is ⌃1-hard. Then there exists a

computable map A⌧0?⇠><?A4BB
@

that takes in as input a description of a sequence of games

⌃ = (⌧=)=2N and outputs the description of a single game ⌧0 such that

1. l@ (⌧0) = 1 if l@ (⌧=) = 1 for some game ⌧= 2 ⌃.

2. l@ (⌧0) < 1

2
if l@ (⌧=) < 1

2
for every game ⌧= 2 ⌃.

Now we show that if the approximate 2>-value problem is ⇧1-hard, then there exists a gap-

preserving compression procedure for the commuting operator value of games.

Theorem 2.47. Assume that the approximate 2>-value problem is ⇧1-hard. Then there exists a

computable map A⌧0?⇠><?A4BB
2>

that takes in as input a description of a sequence of games

⌃ = (⌧=)=2N and outputs the description of a single game ⌧0 such that

1. l2> (⌧0) = 1 if l2> (⌧=) = 1 for every game ⌧= 2 ⌃,

2. l2> (⌧0) < 1

2
, otherwise.
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Proof. Consider the following Turing machine )2>
⌃

: it interleaves running some number of levels

of the NPA semidefinite programming hierarchy [44] on each game ⌧< in the sequence, trying to

find a game < for which l2> (⌧<) < 1. The completeness of the NPA hierarchy implies that if

l2> (⌧<) < 1 for some <, then eventually a certificate will be found. Thus the Turing machine

halts only if there exists < such that l2> (⌧<) < 1.

1 for = 2 N do

2 for < 2 {1, ..., =} do

3 Run the first = levels of the NPA hierarchy for the game ⌧< 2 ⌃.

4 If there is a certificate that l2> (⌧<) < 1 then halt.

5 end

6 end

Pseudocode 12: Specification of )2>
⌃

Consider the sentence ( defined as “8= 2 N, )2>
⌃

does not halt in = steps”. Note that ( is

a ⇧1 sentence, and since the approximate 2>-value problem is ⇧1-hard, this means there is a

corresponding game ⌧0 computable from ( such that such that l2> (⌧0) = 1 if )2>
⌃

never halts (i.e.

l2> (⌧<) = 1 for all <), otherwise l2> (⌧0) < 1

2
. É

Next we show that ⇧1-hardness of the exact 2>-value problem implies a gapless compression

theorem for the commuting operator value of nonlocal games.

Theorem 2.48. Assume that the exact 2>-value problem is ⇧1-hard. Then there exists a computable

map A⌧0?;4BB⇠><?A4BB
2>

that takes in as input a description of a sequence of games ⌃ =

(⌧=)=2N and outputs the description of a single game ⌧0 such that l2> (⌧0) = 1 if and only if

l2> (⌧=) = 1 for all = 2 N.
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Proof. This follows exactly the same proof as above, except the reduction from the sentence ( to

the game ⌧0 is such that l2> (⌧<) = 1 for all < if and only if ( is true if and only if l2> (⌧0) =

1. É

Finally we prove that ⇧2-hardness of the exact @-value problem implies a gapless compression

theorem for the quantum value of nonlocal games.

Theorem 2.49. Assume that the exact @-value problem is ⇧2-hard. Then there exists a computable

map A⌧0?;4BB⇠><?A4BB
@

that takes in as input a description of a sequence of games ⌃ =

(⌧=)=2N and outputs the description of a single game ⌧0 such that l@ (⌧0) = 1 if and only if

l@ (⌧=) = 1 for all = 2 N.

Proof. Consider the following Turing machine )@
⌃

: it takes in as input a precision parameter Y and

an integer <, and it searches for a finite-dimensional strategy ✓ (specified with precision Y) such

that the game ⌧< in the sequence ⌃ has l(⌧<,✓) � 1 � 2Y. This can be done because given a

dimension 3 2 N and a precision parameter Y, there is an algorithm to exhaustively search over an

Y-net over 3-dimensional quantum strategies.

1 Input: Y,<

2 for 3 2 N do

3 If there exists a strategy ✓ over an Y-net of quantum strategies of dimension 3, such

that l(⌧<,✓) > 1 � 2Y, then halt.

4 end

Pseudocode 13: Specification of )@
⌃

Note that if l@ (⌧<) = 1, then for all Y > 0 there exists a finite-dimensional strategy that

achieves value at least 1 � 2Y. On the other hand, if l@ (⌧<) < 1, then there exists an Y for which
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all finite dimensional strategies have value at most 1 � 2Y. Thus l@ (⌧<) = 1 for all < 2 N if and

only if the following sentence ( is true: “8: ,< 9=)@
⌃

halts on input
⇣

1

:
,<

⌘
in = steps”. Note that

( is a ⇧2 sentence, and by our assumption there exists a nonlocal game ⌧0 that is computable from

( such that l@ (⌧0) = 1 if and only if l@ (⌧<) = 1 for all < 2 N.

É

2.7 Appendix A: The pasting lemma

We now prove Theorem 2.18, which is reproduced below for convenience. Recall that � is a

von Neumann algebra with a normal tracial state g.

Lemma 2.50 (Pasting lemma). Let {" (1)
,"

(2)
, . . . ,"

( ) } ⇢ � be a set of projective measure-

ments with outcomes in a finite set A. Suppose that for all 8 < 9 , we have that

"
(8)
0
"

( 9)
1
⇡Y " ( 9)

1
"

(8)
0

where the answer summation is over (0, 1) 2 A2. Then there exists a projective measurement

' = {'Æ0} ⇢ � with outcomes in A such that for all 8 2 [ ],

'[ Æ0 7!08 |1] ⇡X?0BC8=6 "
(8)
1

where X?0BC8=6 = X?0BC8=6 ( , Y) is a function that goes to 0 as Y ! 0.

We introduce some notation. For every integer : � 1, vector Æ0 2 A: , and operator index
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sequence B 2 ["]: , define the operator

%
B

Æ0 = �
(B1)
Æ01

· �(B2)
Æ02

· · · �(B:)
Æ0:

.

Note that %B = {%BÆ0}02A: is a general set of operators (not necessarily a POVM, because the

operators are not positive).

We first prove the following utility Lemma. We use the following notational convention: given

two operator sets ⇠ = {⇠0}02A and ⇡ = {⇡1}12B , we write ⇠ · ⇡ to denote the operator set

{⇠0 · ⇡1}02A,12B .

Lemma 2.51. For integers : � 1, for all all sequences B 2 ["]: , for all 8 2 ["], we have

k%B · �(8) � �(8) · %Bkg  :Y

Proof. We prove this via induction on : . The base case for : = 1 follows from the assumption

of the approximate commutativity of the �(8) measurements. Assuming the inductive hypothesis

holds for some : � 1, we now prove it for : + 1: let B 2 ["]: , C 2 ["]. We can treat (B, C) as an

operator index sequence of length : + 1. Then for all 8 2 ["], we have

k%B,C · �(8) � �(8) · %B,C kg = k%B · �(C) · �(8) � �(8) · %B · �(C) kg


���%B · ⇣�(C) · �(8) � �(8) · �(C)

⌘���
g

+
���⇣%B · �(8) � �(8) · %B

⌘
· �(C)

���
g

(2.7.1)

where the inequality follows from the triangle inequality of the g-norm on operator sets (Theo-

rem 2.10).
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We can bound the first term as

���%B · ⇣�(C) · �(8) � �(8) · �(C)
⌘���
g

=
����(C) · �(8) � �(8) · �(C)

���
g

 Y .

The inequality follows from the almost-commutativity of the �’s, and the first equality is because

=
’
Æ02A:

1,22A

TR

⇣⇣
�
(C)
1

· �(8)
2
� �(8)

2
· �(C)

1

⌘⇤
(%BÆ0)

⇤
%
B

Æ0

⇣
�
(C)
1

· �(8)
2
� �(8)

2
· �(C)

1

⌘⌘

=
’
1,22A

TR

⇣⇣
�
(C)
1

· �(8)
2
� �(8)

2
· �(C)

1

⌘⇤ ⇣
�
(C)
1

· �(8)
2
� �(8)

2
· �(C)

1

⌘⌘

where we used the fact that
Õ
Æ02A: (%BÆ0)

⇤
%
B

Æ0 = 1.

The second term in (2.7.1) can be similarly bounded as

���⇣%B · �(8) � �(8) · %B
⌘
· �(C)

���
g

=
���%B · �(8) � �(8) · %B

���
g

 :Y

by the inductive hypothesis. Thus we can bound (2.7.1) by (: + 1)Y, completing the induction. É

For the remainder of the proof let : = " . Let B = (1, 2, . . . ,") 2 ["]: denote an operator

index sequence. For all Æ0 2 A: , define

& Æ0 = %
B

Æ0 (%
B

Æ0)
⇤
.

Note that & Æ0 is positive and furthermore {& Æ0} forms a POVM with outcomes in A: (this uses the

fact that the �(8)
0

operators are projections).
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We now calculate the closeness of & [ Æ0 7!Æ08 |1] to the individual �(8)
1

’s:

’
12A
k& [ Æ0 7!Æ08 |1] � �

(8)
1
k2
g
=

’
12A

g

⇣⇣
& [ Æ0 7!Æ08 |1] � �

(8)
1

⌘2⌘

 2 � 2

’
12A

g

⇣
& [ Æ0 7!Æ08 |1]�

(8)
1

⌘

= 2 � 2

’
Æ0
g

⇣
& Æ0�

(8)
Æ08

⌘

We give a lower bound on the magnitude of the second term. Spliting the index sequence

B = (B<8, 8, B>8) and answer tuples Æ0 = ( Æ0<8, Æ08, Æ0>8), we get

’
Æ0
g

⇣
& Æ0�

(8)
Æ08

⌘
=

’
Æ0
g

⇣
%
B<8

Æ0<8
· �(8)
Æ08

· %B>8Æ0>8 · (%
B>8

Æ0>8
)⇤ · �(8)

Æ08
· (%B<8Æ0<8 )

⇤ · �(8)
Æ08

⌘

=
’
Æ0<8 ,Æ08

g

⇣
%
B<8

Æ0<8
· �(8)
Æ08

· (%B<8Æ0<8 )
⇤ · �(8)

Æ08

⌘

=
’
Æ0<8 ,Æ08

g

⇣
%
B<8

Æ0<8
· �(8)
Æ08

· (%B<8Æ0<8 )
⇤
⌘
+ g

⇣
%
B<8

Æ0<8
· �(8)
Æ08

·
⇣
(%B<8Æ0<8 )

⇤ · �(8)
Æ08
� �(8)

Æ08
· (%B<8Æ0<8 )

⇤
⌘⌘

= 1 +
’
Æ0<8 ,Æ08

g

⇣
%
B<8

Æ0<8
· �(8)
Æ08

·
⇣
(%B<8Æ0<8 )

⇤ · �(8)
Æ08
� �(8)

Æ08
· (%B<8Æ0<8 )

⇤
⌘⌘

We can bound the magnitude of the second term using Cauchy-Schwarz:

������
’
Æ0<8 ,Æ08

g

⇣
%
B<8

Æ0<8
· �(8)
Æ08

·
⇣
(%B<8Æ0<8 )

⇤ · �(8)
Æ08
� �(8)

Æ08
· (%B<8Æ0<8 )

⇤
⌘⌘������


s ’
Æ0<8 ,Æ08

g

⇣⇣
%
B<8

Æ0<8
· �(8)
Æ08
� �(8)

Æ08
· %B<8Æ0<8

⌘⇤ ⇣
%
B<8

Æ0<8
· �(8)
Æ08
� �(8)

Æ08
· %B<8Æ0<8

⌘⌘
·
s ’
Æ0<8 ,Æ08

g

⇣
%
B<8

Æ0<8
· �(8)
Æ08

· (%B<8Æ0<8 )
⇤
⌘


vt ’
Æ0<8 ,Æ08

���%B<8Æ0<8 · �(8)
Æ08
� �(8)

Æ08
· %B<8Æ0<8

���2

g

 "Y
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where the last inequality follows from Theorem 2.51. Thus we deduce that

s’
12A
k& [ Æ0 7!Æ08 |1] � �

(8)
1
k2
g

p

2"Y . (2.7.2)

Next we argue that the & Æ0 is “almost projective”. Using that
Õ
Æ0 g(& Æ0) =

Õ
Æ0 g(%BÆ0) = 1, we

get

’
Æ0
g

⇣
& Æ0 �&2

Æ0

⌘
=

’
Æ0
g

⇣
%
B

Æ0 �&
2

Æ0

⌘

=
’
Æ0
g

⇣
%
B

Æ0 � %
B

Æ0 · & Æ0
⌘
+ g((%BÆ0 �& Æ0) · & Æ0)

=
’
Æ0
g

⇣
%
B

Æ0 � %
B

Æ0 · (%
B

Æ0)
⇤
⌘
+ g((%BÆ0 �& Æ0) · & Æ0) + g(((%

B

Æ0)
⇤ �& Æ0) · %BÆ0)

=
’
Æ0
g((%BÆ0 �& Æ0) · & Æ0) + g(((%

B

Æ0)
⇤ �& Æ0) · %BÆ0)

where in the last line we used that %BÆ0 · (%BÆ0)
⇤ = & Æ0 and

Õ
Æ0 g(& Æ0) =

Õ
Æ0 g(%BÆ0) = 1. Using

Cauchy-Schwarz and the fact that
Õ
Æ0 k%BÆ0k

2

g
and

Õ
Æ0 k& Æ0k2g are most 1, this last line is at most

2

qÕ
Æ0 k%BÆ0 �& Æ0k

2
g
. To bound this, we note that we can express %BÆ0 and & Æ0 as longer products

%
C

Æ
1

= %(B1)
Æ01

· %(B1)
Æ01

· · · %(B:)
Æ0:

· %(B:)
Æ0:

, %
D

Æ2 = %
(B1)
Æ01

· · · %(B:)
Æ0:

· · · · %(B1)
Æ01

where C = (B1, B1, . . . , B: , B: ) 2 ["]2: and D = (B1, . . . , B: , B: , . . . , B1), and Æ1 = ( Æ01, Æ01, . . . , Æ0: , Æ0: )

and Æ2 = ( Æ01, . . . , Æ0: , Æ0: , . . . , Æ01). In particular, let c denote a permutation on 2: elements such
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that c(Æ1) = Æ2. Thus

s ’
Æ02A:

k%BÆ0 �& Æ0k
2
g
=

s ’
Æ02A:

���%CÆ
1

� %DÆ2
���2

g


vt ’
Æ
12A2:

���%CÆ
1

� %D
c(Æ1)

���2

g

Let c0 be a permutation that differs from c by a swap of adjacent elements. Then

vt ’
Æ
12A2:

���%CÆ
1

� %D
c(Æ1)

���2

g

 Y

by our assumption on the almost-commutativity of the �’s. Since c can be formed from the identity

permutation by swapping at most (2:)2 adjacent elements, by the triangle inequality we have that

vt ’
Æ
12A2:

���%CÆ
1

� %D
c(Æ1)

���2

g

 4:
2
Y

and therefore
Õ
Æ0 g

⇣
& Æ0 �&2

Æ0

⌘
 8"

2
Y.

Thus we can apply the Projectivization Lemma (Theorem 2.17) to the POVM {& Æ0} to obtain a

projective measurement ' = {'Æ0} such that

'Æ0 ⇡[ & Æ0

where [ = X?A> 9 (8"2
Y) where X?A> 9 (·) is the error function from the Projectivization Lemma.

Using the fact that ' is projective, we get from Theorem 2.14 that

'Æ0 '[ & Æ0 .
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Using the Data Processing Lemma for consistency (Theorem 2.12), we get that

'[ Æ0 7!Æ08 |1] '[ & [ Æ0 7!Æ08 |1] .

Converting from consistency to closeness (Theorem 2.13) we get

'[ Æ0 7!Æ08 |1] ⇡p2[
& [ Æ0 7!Æ08 |1]

Finally, we get

k'[ Æ0 7!Æ08] � �
(8) kg 

��
'[ Æ0 7!Æ08] �& [ Æ0 7!Æ08]

��
g
+
���& [ Æ0 7!Æ08] � �

(8)
���
g


p

2[ +
p

2"Y .

Thus we get

'[ Æ0 7!Æ08 |1] ⇡p2[+
p

2"Y
�
(8)
1

.

Setting X?0BC8=6 (" ,A, Y) =
p

2[ +
p

2"Y proves the Lemma.
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2.8 Appendix B: Complexity of noncommutative polynomial optimization

Recall the (commutative) polynomial optimization problem: given polynomials ?, @1, . . . , @<

in =-real variables (G1, . . . , G=) with coefficients over R, compute the value of the following opti-

mization program

sup ?(G1, . . . , G=)

s.t. @8 (G1, . . . , G=) � 0 for 8 = 1, . . . ,<

Given a commutative polynomial optimization program % and a real number 2 deciding if its

value, denoted by l(%), is at least 2 is NP-hard. In terms of upper bounds, we know that this

problem belongs to PSPACE. This is a simple corollary of the following theorem that states that

the existential theory of reals is in PSPACE [15].

Theorem 2.52. There is an algorithm in PSPACE such that given any polynomials @1, . . . , @< 2

R[G1, . . . , G=] decides if 9G1, . . . , G= 2 R @1 � 0, . . . , @< � 0.

We now recall the general formulation of noncommutative polynomial optimization (ncPO for

short) over Hermitian variables: given polynomials ?, @1, . . . , @< in =-noncommutative variables

(G1, . . . , G=) with coefficients over R, compute the value of the following optimization program:

sup hq |?(-) |qi

s.t. @8 (-) ⌫ 0 for 8 = 1, . . . ,<

The supremum is taken over all choices of tuples (H , - , q) where H is a Hilbert space, - is an
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=-tuple of bounded Hermitian operators acting on H , and |qi is a unit vector on H . The notation

?(-) and @8 (-) indicates that we evaluate each of the indeterminates G8 with the Hermitian oper-

ator -8. We consider two different variations of a ncPO program %; if we restrict the supremum

to vary only over finite – but unbounded – dimensional Hilbert spaces then we call the program

finite-dimensional and let lfin(%) denote the value of the program. Otherwise we call the program

infinite-dimensional and let l1(%) denote its value.

Proposition 2.53. Given a nonlocal game⌧ = (X,A, `,⇡) there exists a ncPO program % where

lfin(%) = l@ (⌧) and l1(%) = l2> (⌧).

Proof. Define the following optimization problem % over 2|X||A| variables {�G
0
}, {⌫H

1
}. The

objective polynomial ? to be optimized is

? =
’
G,H2X

’
0,12A

`(G, H) �G
0
⌫
H

1
⇡ (G, H, 0, 1) .

To enforce that the operators {�G
0
}, {⌫H

1
} correspond to POVMs, we add the constraints

1. �G
0
, ⌫

H

1
⌫ 0 (i.e. operators are positive);

2.
Õ
0
�
G

0
=

Õ
1
⌫
H

1
= 1 for all G, H (i.e. operators form POVMs);

3. [�G
0
, ⌫

H

1
] = 0 (i.e. Alice’s and Bob’s operators commute) .

It is easy to see that all these constraints can be expressed as polynomial inequalities. The value

of this optimization problem corresponds exactly to the definition of l@ (in the finite-dimensional

case) and l2> (in the infinite-dimensional case). É

Theorem 2.54. Deciding if lfin(%) � 2 or lfin(%)  2 � Y for fixed Y > 0 is complete for ⌃1.

220



proof of Theorem 2.54. ⌃1-hardness follows from Proposition 2.53 and the ⌃1-hardness of approx-

imating l@ [14].

To show that the problem is contained in ⌃1, we first argue that, when restricting the Hilbert

space to have a fixed dimension 3, a ncPO program % can be recast as a commutative polynomial

optimization problem %3 over C. Let ? denote the objective polynomial and let @1, . . . , @< denote

the constraint polynomials. Let G1, . . . , G= denote the indeterminates of the program.

The optimization problem %3 is defined as follows. To every noncommutative indeterminate

G8 we associate 32 commutative indeterminates G01
8

for 1  0, 1  3 over C. Intuitively these

indeterminates correspond to the entries of the 3 ⇥ 3 Hermitian matrix that is supposed to be

substituted in for G8. We also introduce 3 indeterminates H1, . . . , H3 to represent the unit vector

|qi 2 C3 .

The objective polynomial of %3 is a polynomial ?3 that expresses the quantity

hq |?(G1, . . . , G=) |qi when |qi and the indeterminates G8 are substituted with the corresponding

complex numbers. There are constraint polynomials in %3 that encode the fact that the G8 matrices

are self-adjoint, and furthermore the vector (H1, . . . , H3) is a unit vector. To check the positivity

constraints @8 ⌫ 0 in % we can instead check that all the leading principal minors of @8 are positive.

The order : leading principal minor of a 3 ⇥ 3 matrix is the determinant of the submatrix obtained

from deleting the last 3 � : rows and columns of the matrix.

Thus, by construction, the value of %3 is the value of % when restricted to 3-dimensional

Hilbert spaces. We thus have lfin(%) = lim3!1 l(%3). Therefore lfin(%) � 2 if and only if there

exists 3 2 N such that 2 � l(%3) < Y.

Therefore we have reduced the problem to deciding whether there exists a dimension 3 such

that 2�l(%3) < Y. This corresponds to deciding the ⌃1-sentence 93 2�l(%3) < Y. This sentence

221



is in ⌃1 because determining whether 2 � l(%3)  Y is in PSPACE (and hence is decidable) by

Theorem 2.52.

É

Theorem 2.55. Deciding if lfin(%) � 2 is complete for ⇧2.

Proof. ⇧2-hardness follows from Proposition 2.53 and Theorem 2.45.

Furthermore, deciding if lfin(%) � 2 is equivalent to deciding if for all = 2 N there exists

3 2 N such that 2 � l(%3) < 1

=
where %3 is as defined in the proof of the previous theorem. Thus

we can state the decision problem lfin(%) � 2 as a ⇧2-sentence. É

Theorem 2.56. Deciding if l1(%) � 2 is complete for ⇧1.

Proof. ⇧1-hardness follows from Proposition 2.53 and Theorem 2.40. The inclusion is due to

the NPA-hierarchy of [73]. More precisely [73] constructs an infinite sequence of commutative

polynomial optimization relaxations {%8}82N where their values converge, from above, to the value

of a given ncPO. Then we can decide if l1(%) � 2 by the ⇧1-sentence

88 2 N, l(%8) � 2

where the l(%8)’s converge from above to the the value of l1(%). É
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Chapter 3: Rigidity and Sum of Squares

This chapter is taken verbatim from our paper “A generalization of CHSH and the algebraic

structure of optimal strategies” [74]. All authors of this work contributed equally.

3.1 Introduction

In 1964, Bell showed that local hidden-variable theories, which are classical in nature, cannot

explain all quantum mechanical phenomena [75]. This is obtained by exhibiting a violation of

a Bell inequality by correlations arising from local measurements on an entangled state. Further-

more, in some instances, it is known that only certain measurements can produce these correlations.

So through local measurements not only is it possible to verify that nature is not solely governed

by classical theories, it is also possible to obtain conclusive statistical evidence that a specific

quantum state was present and specific measurements were performed. Results of this nature are

often referred to as self-testing (also known as rigidity), first formalized by Mayers and Yao in [76].

Self-testing has wide reaching applications in areas of theoretical computer science including com-

plexity theory [77, 78, 79], certifiable randomness [80], device independent quantum cryptography

[81, 82], and delegated quantum computation [83]. See [84] for a comprehensive review. Below

we visit five natural questions on the topic of self-testing that we answer in this paper.

The CHSH game [20] is the prototypical example of a non-local game. In CHSH, two separated

players, Alice and Bob, are each provided with a single classical bit, B and C, respectively, chosen
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uniformly at random by a referee; the players reply with single classical bits 0 and 1 to the referee;

and win the game if and only if 0 � 1 = B ^ C. Classically, the players can win the CHSH game

with probability at most 75%. Remarkably, if we allow Alice and Bob to share an entangled state

and employ a quantum strategy, then the optimal winning probability is approximately 85%. For

an introduction to non-local games, see [85].

CHSH is also a canonical example of a self-testing game. Prior to the formalization of self-

testing by Mayers and Yao it was already known [86, 87] that any optimal quantum strategy for

CHSH must be, up to application of local isometries, using the Einstein-Podolsky-Rosen (EPR)

state

|ki = 1
p

2

( |00i + |11i) .

Self-testing can be framed either as an statement about non-local games, Bell inequalities, or

more generally correlations. CHSH is an instance of a non-pseudo-telepathic game. A pseudo-

telepathic game is one that exhibits quantum advantage (i.e, its quantum value is strictly larger

than that of its classical value) and its quantum value is 1. CHSH can also be viewed as a linear

constraint system (LCS) game over Z2 [88]. LCS games are non-local games in which Alice and

Bob cooperate to convince the referee that they have a solution to a system of linear equations. We

introduce a new generalization of CHSH to a family of non-pseudo-telepathic LCS games over Z=

for all = � 2. These games resolve the following questions.

Question 3.1. Are there states other than the maximally entangled state that can be self-tested by

a non-local game?

To date much has been discovered about self-testing the maximally entangled state, 1p
3

Õ
3�1

9=0
| 9 i | 9 i.

Mermin’s magic square game [89] can be used to self-test two copies of the EPR state and the
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parallel-repeated magic square game can be used to self-test 2= copies of the EPR state [90].

The sum of squares (SOS) decomposition technique in [91] shows that the tilted CHSH is a

self-test for any pure state of two entangled qubits. This self-testing is stated in terms of violation

of Bell inequalities. It is an open problem if the same applies for non-local games. The case

for self-testing in higher dimensions has proven more difficult to analyze. Remarkably, it is still

possible to self-test any bipartite entangled state, in any dimension [92]. However, these self-test

results are presented in terms of violations of correlations, unlike the CHSH game which arises

from a non-local game (with binary payoff). Our games also resolve in the negative the question

“Can every LCS game be played optimally using the maximally entangled state?” posed in [88].

Question 3.2. Are there non-local games that provide a self-test for measurements that are not

constructed from qubit Pauli operators?

The protocols in all of the above examples also provide a self-test for the measurement opera-

tors. That is if the players are playing optimally then they must, up to application of local isome-

tries, have performed certain measurements. Self-testing proofs rely on first showing that operators

in optimal strategies must satisfy certain algebraic relations. These relations help identify optimal

operators as representations of some group. This is then used to determine the measurements and

state up to local isometries. In the case of CHSH, one can verify that Alice and Bob’s measure-

ments must anti-commute if they are to play optimally. These relations are then enough to conclude

that operators of optimal strategies generate the dihedral group of degree 4 (i.e., the Pauli group).

Thus CHSH is a self-test for the well-known Pauli matrices f- and f/ [93].

Self-tests for measurements in higher dimensions have been primarily focused on self-testing

=-fold tensor-products of f- and f/ [94, 95, 96]. It is natural to ask if there are self-tests for
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operators that are different than ones constructed from qubit Pauli operators. Self-testing Clifford

observables has also been shown in [97]. Our games provides another example that is neither

Pauli nor Clifford. Since our games are LCS this resolves the question, first posed by [98], in the

affirmative.

Question 3.3. Can we extend the solution group formalism for pseudo-telepathic LCS games to a

framework for proving self-testing for all LCS games?

The solution group introduced in [99] is an indispensable tool for studying pseudo-telepathic

LCS games. To each such game there corresponds a group known as the solution group. Optimal

strategies for these games are characterized by their solution group in the sense that any perfect

quantum strategy must induce certain representations of this group. Additionally, the work in [98]

takes this further by demonstrating a streamlined method to prove self-testing certain LCS games.

It is natural to ask whether these methods can be extended to cover all LCS games. In this paper

we make partial progress in answering this question by introducing a SOS framework, and use it

to prove self-testing for our games. At its core, this framework utilizes the interplay between sum

of squares proofs, non-commutative ring theory, and the Gowers-Hatami theorem [100, 101] from

approximate representation theory.

Question 3.4. Is there a systematic approach to design self-tests for arbitrary finite groups?

Informally a game is a self-test for a group if every optimal strategy induces a state depen-

dent representation of the group. In every example that we are aware of, the self-tested solution

group for pseudo-telepathic LCS games is the Pauli group. Slofstra, in [102], introduced an em-

bedding theorem that embeds (almost) any finite group into the solution group of some LCS game.

With the embedding theorem, the problem of designing games with certain properties reduces to
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finding groups with specific properties. Slofstra uses this connection to design games that exhibit

separations between correlation sets resolving the ‘middle’ Tsirelson’s Problem.

However, there are three shortcomings to this approach. Firstly, the resulting game is very

complex. Secondly, not all properties of the original group are necessarily preserved. Finally, the

game is not a self-test for the original group. Our games self-test an infinite family of groups,

non of which are the Paulis. One such example is the alternating group of degree 4. The SOS

framework makes partial progress towards a general theory for self-testing arbitrary groups.

Question 3.5. Is there a non-local game that is not a self-test?

In addition to the infinite family of games, we introduce an LCS game that is obtained from

“gluing” together two copies of the magic square game. This glued magic square provides an

example of a game that is not a self-test [89].

3.1.1 Main Results

We introduce a family of non-local games G= defined using the following system of equations

over Z=

G0G1 = 1,

G0G1 = l=.

We are identifying Z= as a multiplicative group and l= as the primitive =th root of unity. Note that

the equations are inconsistent, but this does not prevent the game from being interesting. Alice and

Bob try to convince a referee that they have a solution to this system of equations. Each player

receives a single bit, specifying an equation for Alice and a variable for Bob, and subsequently
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each player returns a single number in Z=. Alice’s response should be interpreted as an assignment

to variable G0 in the context of the equation she received, and Bob’s response is interpreted as an

assignment to the variable he received. The referee accepts their response iff their assignments

are consistent and satisfy the corresponding equation. The case = = 2 is the CHSH game. The

classical value of these games is 3

4
. In Section 3.4, we give a lower-bound on the quantum value of

this family of games. Specifically in Theorem 3.4.9, we show that the quantum value is bounded

below by

1

2
+ 1

2= sin
�
c

2=

� >

3

4
.

We show that the lower-bound is tight in the case of =  5. We have numerical evidence that these

lower-bounds are tight for all =. Specifically, we can find an upper-bound on the quantum value of

a non-local game using the well-known hierarchy of semi-definite programs due to [103]. It is of

interest to note that the upper-bound is not obtained using the first level of the NPA hierarchy, as is

the case with the CHSH game. Instead, the second level of this hierarchy was needed for = � 3.

The optimal quantum strategy for these games uses the entangled state

|k=i =
1

W=

=�1’
8=0

(1 � I=+28+1) |f8 (0),f�8 (0)i 2 H� ⌦H⌫,

where W= is the normalization factor, f= = (0, 1, . . . , = � 1) is a permutation, and I= is a 4=’th

root of unity. Observe that the state |k=i has full Schmidt rank. Despite this, in all cases except

= = 2, the state |k=i is not the maximally entangled state. For = > 2, the entropy of our state is not

maximal, but approaches the maximal entropy of log(=) in the limit.

In Section 3.5, we show that the group generated by the optimal strategy has the following
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presentation

⌧= =
D
%0, %1, � | %=

0
, %

=

1
, �
=

, [�, %0], [�, %1], �8
�
%
8

0
%
�8
1

�2 for 8 = 1, 2, . . . , b=/2c
E
.

For example ⌧3 = Z3 ⇥ �4 where �4 is the alternating group of degree 4. We show that our games

are a self-test for these groups, for =  5, in the sense that every optimal play of this game induces

a representation of this group. We conjecture that this is true for all =. This partially resolves

Question 3.4.

In section 3.7, we analyze our game in the case = = 3 and show that it can be used as a robust

self-test for the following state

1
p

10

⇣
(1 � I4) |00i + 2|12i + (1 + I2) |21i

⌘
2 C3 ⌦ C3

,

where I := 48c/6 is the primitive 12th root of unity. Since this state is not the maximally entangled

state, we have thus provided an answer to Question 3.1. This game also answers Question 3.2 since

it provides a robust self-test for the following operators

�0 =

©≠≠≠≠≠≠≠
´

0 0 1

1 0 0

0 1 0

™ÆÆÆÆÆÆÆ
¨

, �1 =

©≠≠≠≠≠≠≠
´

0 0 �I2

I
2

0 0

0 I
2

0

™ÆÆÆÆÆÆÆ
¨

,

⌫0 =

©≠≠≠≠≠≠≠
´

0 0 1

1 0 0

0 1 0

™ÆÆÆÆÆÆÆ
¨

, ⌫1 =

©≠≠≠≠≠≠≠
´

0 �I2 0

0 0 I
2

I
2

0 0

™ÆÆÆÆÆÆÆ
¨

,
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which do not generate the Pauli group of dimension 3.

In Section 3.6, we introduce the sum of squares framework, using an important lemma proven

in Section 3.2.4, that gives a streamlined method for proving self-testing. We then use this frame-

work to prove self-testing for our games. Furthermore, in Section 3.8, we show that when restricted

to pseudo-telepathic games, the SOS framework reduces to the solution group formalism of Cleve,

Liu, and Slofstra [99].

In section 3.9, we construct an LCS game that is obtained from “gluing” two copies of the

magic square game together. This game is summarized in Figure 3.1. We exhibit two inequivalent

perfect strategies and thus provide an answer to Question 3.5.

41 — 42 — 43

| | | |

44 — 45 — 46

| | | |

47 — 48 — 49

| |

410 — 411 — 412

| | | |

413 — 414 — 415

| | | |

416 — 417 — 418

Figure 3.1: This describes an LCS game with 18 variables 41, 42, . . . , 418. Each single-line indicates that the
variables along the line multiply to 1, and the double-line indicates that the variables along the line multiply
to �1.
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3.1.2 Proof techniques

We prove self-testing in this paper following a recipe that we refer to as the SOS framework. At

its core it applies the Gowers-Hatami (GH) theorem which is a result in approximate-representation

theory. GH has been used previously in proving self-testing, but some of the details have been

overlooked in the literature. In this paper, we prove Lemma 3.2.4 that encapsulates the use of

GH in proving self-testing. In Section 3.2.4, we define approximate representations, irreducible

strategies, the Gowers-Hatami theorem and present the proof of the following lemma.

Lemma (informal). Let ⌧�,⌧⌫ be groups. Suppose every optimal strategy of the game G induces

a pair of approximate representations of ⌧� and ⌧⌫. Further suppose that there is a unique

optimal irreducible strategy (d,f, |ki) where d,f are irreps of ⌧�,⌧⌫, respectively. Then G is

a self-test.

Applying this lemma requires us to ascertain two properties of the game:

1. Every optimal strategy induces approximate representations of some groups ⌧� and ⌧⌫.

2. There is a unique irreducible strategy (d,f, |ki) for the game G.

The first step is to obtain the bias expression for the game G that allows for a simple calculation

of the wining probability of any startegy S = ({�8}, {⌫9 }, |ki) (here �8 and ⌫9 are Alice and Bob’s

measurement observables, respectively, and |ki is the shared state). The bias expression for G= is

given by

B= (�0, �1, ⌫0, ⌫1) =
=�1’
8=1

�
8

0
⌫
�8
0
+ �8

0
⌫
8

1
+ �8

1
⌫
�8
0
+ l�8 �8

1
⌫
8

1
.

Then the winning probability of S is given by a(G,S) = hk | ( 1

4=
B= (�0, �1, ⌫0, ⌫1) + 1

=
) |ki. For

any real _ for which there exist some polynomials ): giving a sum of squares decomposition such
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as

_� � B= (�0, �1, ⌫0, ⌫1) =
’
:

)
⇤
:
(�0, �1, ⌫0, ⌫1)): (�0, �1, ⌫0, ⌫1),

provides an upper bound of _

4=
+ 1

=
on the optimal value of the game (which we denote by a⇤(G=)).

This follows since expressing _� � B= as an SOS proves that it is a positive semidefinite operator

and consequently hk |B= |ki  _ for all states |ki.

Now if we have an SOS for _ = 4=a
⇤(G) � 4, then we can obtain some algebraic relations

that every optimal strategy must satisfy. This follows since every optimal strategy must satisfy

hk | (_� � ⌫=) |ki = 0, from which it follows ): |ki = 0 for all : .

Let ("9 (�0, �1)� �) |ki = 0 be all the relations derived from the SOS relations ): |ki = 0 such

that "8 are monomials only in Alice’s operators, and let ⌧� be the group with the presentation

⌧� = h%0, %1 : "8 (%0, %1)i

We similarly obtain a group ⌧⌫ for Bob. These are the group referred in the above lemma. For

the first assumption one must show that any optimal strategy gives approximate representations of

these groups.

The next step is to prove the second assumption. We need to show that among all the pairs

of irreps of ⌧� and ⌧⌫ only one could give rise to an optimal strategy. To this end, we let

'8 (�0, �1) |ki = 0 be all the relations derived from relations ): |ki = 0. These '8 are allowed

to be arbitrary polynomials (as opposed to monomials in the case of group relations). So any opti-

mal irrep must satisfy all these polynomial relations. In some special cases, e.g., games G=, there

is one polynomial relation that is enough to identify the optimal irreps.
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3.1.3 Relation to prior work

Much work has been done to generalize CHSH to games over Z=. The first generalization ap-

peared in Buhrman and Massar [104], which was then investigated also by Bavarian and Shor [105]

and later extended in [106]. The game we present in section 3.3 provides a different generalization

by viewing CHSH as an LCS game. The classical value of our games is found to be 3

4
from casual

observation. Furthermore, we showcase quantum advantage by providing a lower bound on the

quantum value for all =.

In contrast the generalization of CHSH discussed in Kaniewski et al. is so difficult to analyze

that even the classical value is not known except in the cases of = = 3, 5, 7. Additionally the

quantum value of their Bell inequality is only determined after multiplying by choices of “phase”

coefficients. Self-testing for this generalization is examined by Kaniewski et al., where they prove

self-testing for = = 3 and show a weaker form of self-testing in the cases of = = 5, 7. For the games

we introduce, we have self-testing for = = 3, 4, 5 and we conjecture that they are self-tests, in the

strict sense, for all =.

Furthermore, in [107], Slofstra exhibits a game whose correlations are not extreme point, which

suggests that it is also not a self-test, his result is not formulated in the language of self-testing and

it would be interesting to rigorously show this to be the case. Independently of our work, in [108],

a family of Bell inequalities, which includes the �3322 game, is shown to self-test the maximally

entangled state but no measurement operators.
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3.1.4 Further work

This paper leaves many open problems and avenues for further investigation. The most impor-

tant of these follow.

1. We conjecture that the class of games G= are rigid for all =. The step missing from resolving

this conjecture is an SOS decomposition a(G=,S=)� �B= =
Õ
:
U=,:)

⇤
=,:
)=,: for = > 5 where

polynomials )=,: viewed as vectors have unit norms and U=,: are positive real numbers.

If this conjecture is true, then we have a simple family of games with 1 bit question and log =

bit answer sizes that are self-testing full-Schmidt rank entangled states of any dimension. In

fact, we show that the amount of entanglement in these self-tested states rapidly approaches

the maximum amount of entanglement. To the best of our knowledge this is the first example

of a family of games with such parameters.

2. In Section 3.5, we give efficient explicit presentations for ⌧= and its multiplication table.

Can we go further and characterize these groups in terms of direct and semidirect products

of small well-known groups? The first few cases are as follows

⌧3 � Z3 ⇥ �4,⌧4 � (Z3

2
o Z4) o Z4,⌧5 � (Z4

2
o Z5) ⇥ Z5,

⌧6 � Z3 ⇥
⇣
(((Z4 ⇥ Z3

2
) o Z2) o Z2) o Z3

⌘
.

3. The third problem is to characterize all mod = games over two variables and two equations.
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Let (Z=,<1,<2) be the LCS game mod = based on the system of equations

G0G1 = l<1

=

G0G1 = l<2

=
.

So for example (Z=, 0, 1) = G=. A full characterization includes explicit construction of

optimal strategies, a proof of self-testing, and a characterization of the group generated by

optimal strategies (i.e., the self-tested group). Interesting observations can be made about

these games. For example (Z4, 0, 2) self-tests the same strategy as CHSH. Another inter-

esting observation is that the self-tested group of (Z3, 0, 1) and (Z3, 0, 2) is ⌧3 � Z3 ⇥ �4,

whereas the self-tested group of (Z3, 1, 2) is �4.

These games have similar bias expressions to those of G=. It is likely that the same kind

of methods can be used to find optimal strategies and establish self-testing for these games.

For example (Z=, 0,<) for all < 2 [=] \ {0} self-test the same group ⌧=. Just like G=, the

representation theory of ⌧= dictates the optimal strategies of all these games: the optimal

irreducible strategies of (Z=, 0,<) for all < 2 [=] \ {0} are distinct irreps of ⌧= of degree =.

For example optimal strategies for all games (Z5, 0,<), where < 2 [5] \ {0}, generate ⌧5.

This group has 15 irreps of degree five. For each < 2 [5], there are three irreps sending

� ! l
<

5
�5. For each < 2 [5] \ {0}, the unique optimal irrep strategy of (Z5, 0,<) is one of

these three irreps.

These games are a rich source of examples for self-testing of groups. A full characterization

is a major step toward resolving Question 3.4.
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4. One drawback of mod = games is that the size of the self-tested groups grows exponentially,

|⌧= | = 2
=�1
=

2. Where are the games that self-test smaller groups for example the dihedral

group of degree 5, ⇡5? It seems that to test more groups, we need to widen our search space.

In a similar fashion to mod = games, define games (⌧, 61, 62) where ⌧ is a finite group and

61, 62 2 ⌧, based on the system of equations

G0G1 = 61

G0G1 = 62.

Understanding the map that sends (⌧, 61, 62) to the self-tested group helps us develop a

richer landscape of group self-testing.

5. How far can the SOS framework be pushed to prove self-testing? The first step in answer-

ing this question is perhaps a characterization of games (⌧, 61, 62) (and their variants, e.g.,

system of equations with more variables and equations) using this framework.

6. Glued magic square, as presented in Section 3.9, is not a self-test for any operator solution,

but both inequivalent strategies that we present use the maximally entangled state. Is the

glued magic square a self-test for the maximally entangled state? If true, this would give

another example of a non-local game that only self-tests the state and not the measurement

operators.

After the publication of our work, Mančinska et al. [109] showed that this is indeed the

case; specifically they showed that the glued magic square self-tests convex combinations of

the two inequivalent strategies we presented in our work. Along with [108], these positively
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resolve a question asked in [84] in the context of non-local games.

3.1.5 Organization of paper

In section 3.2, we fix the nomenclature and give basic definitions for non-local games, winning

strategies, self-testing, LCS games, approximate representation, and the Gowers-Hatami theorem.

In section 3.3, we give the generalization of CHSH and derive the bias operator of these games,

that is used in the rest of the paper. In Section 3.4, we establish lower-bounds on the quantum value

for these games by presenting explicit strategies. In this section we also analyse the entanglement

entropy of the shared states in these explicit strategies. In Section 3.5, we give a presentation for the

groups generated by Alice and Bob’s observables. In Section 3.6, we present the SOS framework

and give a basic example of its application in proving self-testing. In section 3.7, we use the SOS

framework to show that our lower-bound is tight in the case of = = 3, and answer the questions we

posed about self-testing. In section 3.8, we show that the SOS framework reduces to the solution

group formalism in the case of pseudo-telepathic LCS games. Finally, in Section 3.9 we provide

an example of a non-rigid game.

3.2 Preliminaries

We assume the reader has a working understanding of basic concepts from the field of quantum

information theory. For an overview of quantum information, refer to [110, 111, 112].

3.2.1 Notation

We use ⌧ to refer to a group, while G is reserved for a non-local game. Let [=,<] denote the

set {=, = + 1, . . . ,<} for integers =  <, and the shorthand [=] = [0, = � 1]. This should not be
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confused with [- ,. ], which is used to denote the commutator -. � .- . We let �= denote the

= ⇥ = identity matrix and 48, for 8 2 [=], be the ith standard basis vector. The pauli observables are

denoted fG ,fH, and fI. The Kronecker delta is denoted by X8, 9 .

We will let H denote a finite dimensional Hilbert space and use the notation |ki 2 H to

refer to vectors in H . We use L(H) to denote the set of linear operators in the Hilbert space H .

We use U= (C) to denote the set of unitary operators acting on the Hilbert space C=. The set of

projection operators acting on H are denoted by Proj(H). Given a linear operator � 2 L(H),

we let �⇤ 2 L(H) denote the adjoint operator. For - ,. 2 L(H), the Hilber-Schmidt inner

product is given by h- ,.i = TR(-⇤. ). We also use the following shorthands TRd (-) = TR(-d)

and h- ,.id = TRd (-⇤. ) where - ,. 2 L(H) and d is a density operator acting on H (i.e.,

positive semidefinite with trace 1). The von Neumann entropy of a density matrix d is given by

((d) = �TR(d log d).

We use<(U) to denote the real part of a complex number U. We let l= = 428c/= be the =th root

of unity. The Dirichlet kernel is D< (G) = 1

2c

Õ
<

:=�< 4
8:G which by a well known identity is equal

to sin((<+ 1

2
)G)

2c sin( G
2
) .

The maximally entangled state with local dimension = is given by |�=i = 1p
=

Õ
=�1

8=0
|8i |8i 2

C= ⌦ C=.

Let H�,H⌫ be Hilbert spaces of dimension = and |ki 2 H� ⌦ H⌫ be a bipartite state. Then

there exists orthonormal bases {|8�i}=�1

8=0
for H� and {|8⌫i}=�1

8=0
for H⌫ and unique non-negative

real numbers {_8}=�1

8=0
such that |ki = Õ

=�1

8=0
_8 |8�i |8⌫i. The _8’s are known as Schmidt coefficients.

The Schmidt rank of a state is the number of non-zero Schmidt coefficients _8. The Schmidt

rank is a rough measure of entanglement. In particular, a pure state |ki is entangled if and only if

it has Schmidt rank greater than one.
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Another measure of entanglement is the entanglement entropy. Given the Schmidt decomposi-

tion of a state |ki = Õ
=�1

8=0
_8 |8�i |8⌫i, the entanglement entropy (k is given by �Õ

=�1

8=0
_

2

8
log(_2

8
).

The maximum entanglement entropy is log(=). A pure state is separable (i.e. not entangled)

when the entanglement entropy is zero. If the entanglement entropy of a state |ki is maximum,

then the state is the maximally entangled state up to local unitaries, i.e., there exist unitaries

*�,*⌫ 2 U= (C), such that |ki = *� ⌦ *⌫ |�=i.

3.2.2 Non-local games

A non-local game is played between a referee and two cooperating players Alice and Bob who

cannot communicate once the game starts. The referee provides each player with a question (input),

and the players each respond with an answer (output). The referee determines whether the players

win with respect to fixed conditions known to all parties. Alice does not know Bob’s question and

vice-versa as they are not allowed to communicate once the game starts. However, before the game

starts, the players could agree upon a strategy that maximizes their success probability. Below we

present the formal definition and some accompanying concepts.

Definition 3.2.1. A non-local game G is a tuple (I�,I⌫,O�,O⌫, c,+) where I� and I⌫ are finite

question sets, O� and O⌫ are finite answer sets, c denotes the probability distribution on the set

I� ⇥ I⌫ and + : I� ⇥ I⌫ ⇥ O� ⇥ O⌫ ! {0, 1} defines the winning conditions of the game.

When the game begins, the referee chooses a pair (8, 9) 2 I� ⇥I⌫ according to the distribution

c. The referee sends 8 to Alice and 9 to Bob. Alice then responds with 0 2 O� and Bob with

1 2 O⌫. The players win if and only if + (8, 9 , 0, 1) = 1.

A classical strategy is defined by a pair of functions 5� : I� ! O� for Alice and 5⌫ : I⌫ ! O⌫
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for Bob. The winning probability of this strategy is

’
8, 9

c(8, 9)+ (8, 9 , 5� (8), 5⌫ ( 9)).

The classical value, a(G), of a game is the supremum of this quantity over all classical strategies

( 5�, 5⌫).

A quantum strategy S for G is given by Hilbert spaces H�, H⌫, a state |ki 2 H� ⌦ H⌫, and

projective measurements {⇢8,0}02O� ⇢ Proj(H�) and {�9 ,1}12O⌫ ⇢ Proj(H⌫) for all 8 2 I� and

9 2 I⌫.

Alice and Bob each have access to Hilbert spaces H� and H⌫ respectively. On input (8, 9),

Alice and Bob measure their share of the state |ki according to {⇢8,0}02O� and {�9 ,1}12O⌫ . The

probability of obtaining outcome 0, 1 is given by hk |⇢8,0 ⌦ �9 ,1 |ki. The winning probability of

strategy S, denoted by a(G,S) is therefore

a(G,S) =
’
8, 9 ,0,1

c(8, 9)hk |⇢8,0 ⌦ �9 ,1 |ki+ (8, 9 , 0, 1).

The quantum value of a game, written a⇤(G), is the supremum of the winning probability over all

quantum strategies.

The famous CHSH game [20] is the tuple (I�,I⌫,O�,O⌫, c,+) where I� = I⌫ = O� = O⌫ =

{0, 1}, c is the uniform distribution on I� ⇥ I⌫, and + (8, 9 , 0, 1) = 1 if and only if

0 + 1 ⌘ 8 9 mod 2.

The CHSH game has a classical value of 0.75 and a quantum value of 1

2
+
p

2

4
⇡ 0.85 [20].
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A strategy S is optimal if a(G,S) = a⇤(G). When a game’s quantum value is larger than the

classical value we say that the game exhibits quantum advantage. A game is pseudo-telepathic if

it exhibits quantum advantage and its quantum value is 1.

An order-= generalized observable is a unitary * for which *= = �. It is customary to assign

an order-= generalized observable to a projective measurement system {⇢0, . . . , ⇢=�1} as

� =
=�1’
8=0

l
8

=
⇢8 .

Conversely, if � is an order-= generalized observable, then we can recover a projective measure-

ment system {⇢0, . . . , ⇢=�1} where

⇢8 =
1

=

=�1’
:=0

�
l
�8
=
�

�
:

.

In this paper, present strategies in terms of generalized observables.

Consider the strategy S consisting of the shared state |ki 2 H� ⌦H⌫ and observables {�8}82I�

and {⌫9 } 92I⌫ for Alice and Bob. We say the game G is a self-test for the strategy S if there exist

Y0 � 0 and X : real
+ ! real

+ a continuous function with X(0) = 0, such that the following hold

1. S is optimal for G.

2. For any 0  Y  Y0 and any strategy eS = ({e�8}82I�, {f⌫9 } 92I⌫ , |eki) where |eki 2 eH� ⌦ eH⌫

and a(G,
eS) � a⇤(G) � Y, there exist local isometries +� and +⌫, and a state |junki such that

the following hold

•
��
+� ⌦ +⌫ |eki � |ki |junki

��  X(Y),
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•
��
+�

e
�8 ⌦ +⌫ |eki � (�8 ⌦ � |ki) |junki

��  X(Y) for all 8 2 I�,

•
��
+� ⌦ +⌫f⌫9 |eki � (� ⌦ ⌫9 |ki) |junki

��  X(Y) for all 9 2 I⌫.

We use the terminology rigidity and self-testing interchangeably. Exact rigidity is a weaker notion

in which, we only require the second condition to hold for Y = 0. In Section 3.6, we give as an

example the proof of exact rigidity of the CHSH game.

3.2.3 Linear constraint system games

A linear constraint system (LCS) game is a non-local game in which Alice and Bob cooperate

to convince the referee that they have a solution to a system of linear equations over Z=. The referee

sends Alice an equation and Bob a variable in that equation, uniformly at random. In response,

Alice specifies an assignment to the variables in her equation and Bob specifies an assignment to

his variable. The players win exactly when Alice’s assignment satisfies her equation and Bob’s

assignment agrees with Alice. It follows that an LCS game has a perfect classical strategy if and

only if the system of equations has a solution over Z=. Similarly the game has a perfect quantum

strategy if and only if the system of equations, when viewed in the multiplicative form, has an

operator solution [88].

To each LCS game there corresponds a group referred to as the solution group. The represen-

tation theory of solution group is an indispensable tool in studying pseudo-telepathic LCS games

[99, 98]. In what follows we define these terms formally, but the interested reader is encouraged to

consult the references to appreciate the motivations. In this paper, we are interested in extending

solution group formalism to general LCS games using the sum of squares approach. We explore

this extension in Section 3.7. When restriced to psuedo-telepathic LCS games, our SOS approach
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is identical to the solution group formalism. We present this in section 3.8 for completeness.

Consider a system of linear equations �G = 1 where � 2 ZA⇥B
=

, 1 2 ZA
=
. We let +8 denote the set

of variables occurring in equation 8

+8 = { 9 2 [B] : 08, 9 < 0}.

To view this system of linear equations in multiplicative form, we identify Z= multiplicatively as

{1,l=, . . . ,l=�1

=
}. Then express the 8th equation as

÷
92+8

G

08 9

9
= l18

=
.

In this paper we only use this multiplicative form. We let (8 denote the set of satisfying assignments

to equation 8. In the LCS game G�,1, Alice receives an equation 8 2 [A] and Bob receives a variable

9 2 +8, uniformly at random. Alice responds with an assignment G to variables in +8 and Bob with

an assignment H to his variable 9 . They win if G 2 (8 and G 9 = H.

The solution group ⌧�,1 associated with G�,1, is the group generated by 61, . . . , 6B, �, satisfy-

ing the relations

1. 6=
9
= �= = 1 for all 9 ,

2. 6 9 � = �6 9 for all 9 ,

3. 6 96: = 6:6 9 for 9 , : 2 +8 for all 8, and

4.
Œ

92+8 6
�8 9

9
= �18 .

243



3.2.4 Gowers-Hatami theorem and its application to self-testing

In order to precisely state our results about self-testing in Section 3.7, we recall the Gowers-

Hatami theorem and (Y, |ki)-representation [100, 98, 101].

Definition 3.2.2. Let ⌧ be a finite group, = an integer, Hilbert spaces H�,H⌫ of dimension =, and

|ki 2 H� ⌦H⌫ a state with the reduced density matrix f 2 L(H�). An (Y, |ki)-representation of

⌧, for Y � 0, is a function 5 : ⌧ ! *= (C) such that

EG,H<
⇣
h 5 (G)⇤ 5 (H), 5 (G�1

H)if
⌘
� 1 � Y. (3.2.1)

In the case of Y = 0, we abbreviate and call such a map a |ki-representation, in which case the

condition 3.2.1 simplifies to

h 5 (G)⇤ 5 (H), 5 (G�1
H)if = 1,

or equivalently

5 (H)⇤ 5 (G) 5 (G�1
H) |ki = |ki, (3.2.2)

for all G, H 2 ⌧. In Condition (3.2.2), we are implicitly dropping the tensor with identity on H⌫.

Note that a |ki-representation 5 is just a group representation when restricted to the Hilbert space

H0 = span{ 5 (6) |ki : 6 2 ⌧}, i.e., the Hilbert space generated by the image of 5 acting on |ki.
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To see this, we first rewrite (3.2.2) as

5 (G�1
H) |ki = 5 (G)⇤ 5 (H) |ki.

Thus for any G, H 2 ⌧ we have

5 (G�1)⇤ 5 (G�1
H) |ki = 5 (GG�1

H) |ki = 5 (H) |ki.

We can multiply both sides by 5 (G�1) to obtain 5 (G�1
H) |ki = 5 (G�1) 5 (H) |ki for all G, H 2 ⌧ or

equivalently

5 (G) 5 (H) |ki = 5 (GH) |ki for all G, H 2 ⌧ . (3.2.3)

This shows that for all G 2 ⌧, the operator 5 (G) leaves the subspace �0 invariant. Thus we can

view 5 (G) |�0
, the restriction of 5 (G) to this subspace, as an element of L(�0). Furthermore, by

(3.2.3), the map G 7! 5 (G) |�0
is a homormorphism and thus a representation of ⌧ on �0.

We need the following special case of the Gowers-Hatami (GH) theorem as presented in [101].

The analysis of the robust rigidity of these games uses the general statement of GH, using (Y, |ki)-

representation. Although skipped in this paper, the tools are in place to analyse the robust case.

Theorem 3.2.3 (Gowers-Hatami). Let 3 be an integer, |ki 2 C3 ⌦ C3 a bipartite state, ⌧ a finite

group, and 5 : ⌧ ! U3 (C) a |ki-representation. Then there exist 30 � 3, a representation

6 : ⌧ ! U3
0 (C), and an isometry + : C3 ! C3

0
such that 5 (G) ⌦ � |ki = +⇤6(G)+ ⌦ � |ki.

From the proof of this theorem in [101], we can take 6 = �d �3 ⌦ �3d ⌦ d where d ranges over
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irreducible representations of ⌧ and 3d is the dimension of d. Additionally, in the same bases,

we can factorize + into a direct sum over irreps such that +D = �d (+dD), for all D 2 C3 where

+d 2 L(C3 ,C3 ⌦ C3d ⌦ C3d) are some linear operators. It holds that
Õ
d
+
⇤
d
+d = +⇤+ = �3 .

In some special cases, such as in our paper, we can restrict 6 to be a single irreducible rep-

resentation of ⌧. In such cases we have a streamlined proof of self-testing. Lemma 3.2.4 below

captures how GH is applied in proving self-testing in these cases.

Let G = (I�,I⌫,O�,O⌫, c,+) be a game, ⌧� and ⌧⌫ be groups with generators {%8}82�� and

{& 9 } 92�⌫ , b
⌧� and b

⌧⌫ be free groups over {%8}82�� and {& 9 } 92�⌫ , and S = ({�8}, {⌫9 }, |ki) be a

strategy where |ki 2 C3�⌦C3⌫ . We define two functions 5 S
�

: b
⌧� ! U3�

(C), 5 S
⌫

: b
⌧⌫ ! U3⌫

(C)

where 5
S
�
(%8) = �8 and 5

S
⌫
(& 9 ) = ⌫9 and they are extended homomorphically to all of b

⌧�

and b
⌧⌫, respectively. Suppose that the game G has the property that for every optimal strategy

eS = ({e�8}, {e⌫9 }, |eki), 5 eS
�

and 5

eS
⌫

are |eki-representations for ⌧� and ⌧⌫, respectively.

Now applying GH, for every optimal strategy eS, there exist representations 6�, 6⌫ of ⌧�,⌧⌫,

respectively, and isometries +�,+⌫ such that

5

eS
�
(G) ⌦ � |eki = +⇤

�
6� (G)+� ⌦ � |eki for all G 2 ⌧�,

� ⌦ 5 eS
⌫
(H) |eki = � ⌦ +⇤

⌫
6⌫ (H)+⌫ |eki for all H 2 ⌧⌫.

Unfortunately this is not enough to establish rigidity for G as defined in Section 3.2.2. To do this,

we need and extra assumption on G that we deal with in the following lemma.

For any pair of representations d,f of ⌧�,⌧⌫ respectively, and state |ki 2 C3f ⌦ C3d , let

S
d,f,|ki = ({d(%8)}82I�, {f(& 9 )} 92I⌫ , |ki) be the strategy induced by the pair of representations

(d,f). Also let a(G, d,f) = max|ki a(G,Sd,f,|ki).
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Lemma 3.2.4. Suppose that there is only one pair of irreps d̄, f̄ for which a(G, d̄, f̄) = a
⇤(G).

Additionally assume that |ki is the unique state (up to global phase) for which S
d̄,f̄,|ki is an

optimal strategy. Let eS = ({e�8}, {e⌫9 }, |eki) be an optimal strategy of G such that |eki 2 C3� ⌦C3⌫ ,

5

eS
�

and 5

eS
⌫

are |eki-representations for ⌧� and ⌧⌫, respectively. Then there exist isometries +� :

C3� ! C3� |⌧� |,+⌫ : C3⌫ ! C3⌫ |⌧⌫ |, and a state |junki such that

+� ⌦ +⌫ |eki = |junki |ki,

+�
e
�8 ⌦ +⌫ |eki = |junki d̄(%8) ⌦ �3 f̄ |ki,

+� ⌦ +⌫e⌫9 |eki = |junki�3d̄ ⌦ f̄(& 9 ) |ki,

for all 8 2 ��, 9 2 �⌫.

Proof. For simplicity, we only prove the case of binary games, i.e., we assume |O� | = |O⌫ | = 2.

The general case follows similarly. For binary games we only need to consider strategies comprised

of binary observables (� is a binary observable if it is Hermitian and �
2 = �). Without loss of

generality, we can assume that there exist some complex numbers _8 9 , _8, _ 9 , _ such that for any

strategy S = ({�8}, {⌫9 }, |ki)

a(G,S) = hk |
 ’
82��, 92�⌫

_8 9 �8 ⌦ ⌫9 +
’
82��

_8�8 ⌦ � +
’
92�⌫

_ 9 � ⌦ ⌫9 + _� ⌦ �
!
|ki. (3.2.4)

As argued earlier, by GH, we have

5

eS
�
(G) ⌦ � |eki = +⇤

�
6� (G)+� ⌦ � |eki, (3.2.5)

� ⌦ 5 eS
⌫
(G) |eki = � ⌦ +⇤

⌫
6⌫ (G)+⌫ |eki, (3.2.6)
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where 6� = �d �3�3d ⌦ d, 6⌫ = �f�3⌫3f ⌦f, where d and f range over irreducible representations

of ⌧� and ⌧⌫, respectively. We also have the factorization +�D = �d (+�,dD), for all D 2 C3�

as well as +⌫D = �f (+⌫,fD), for all D 2 C3⌫ . As mentioned above in the discussion that fol-

lowed Theorem 3.2.3, +�,d and +⌫,f are some linear operators for which
Õ
d
+
⇤
�,d
+�,d = �3�

and

Õ
f
+
⇤
⌫,f
+⌫,f = �3⌫ .

We want to write the winning probability of eS in terms of the winning probabilities of irrep

strategies. To this end, let

?d,f = k+�,d ⌦ +⌫,f |ekik2,

|ekd,fi =
8>>>>>><
>>>>>>:

1p
?d,f

+�,d ⌦ +⌫,f |eki ?d,f > 0,

0 ?d,f = 0,

and consider strategies

S
�⌦d,�⌦f,|ekd,f i = ({�3�3d ⌦ d(%8)}, {�3⌫3f ⌦ f(& 9 )}, |ekd,fi).

Using (3.2.4), we can write

a(G, eS) = hek |
 ’
82��, 92�⌫

_8 9
e
�8 ⌦ e⌫9 + ’

82��
_8

e
�8 ⌦ � +

’
92�⌫

_ 9 � ⌦ e⌫9 + _� ⌦ �
!
|eki

=
’
d,f

hek |+⇤
�,d
⌦ +⇤

⌫,f

⇣ ’
82��, 92�⌫

_8 9 (�3�3d ⌦ d(%8)) ⌦ (�3⌫3f ⌦ f(& 9 )) +
’
82��

_8 (�3�3d ⌦ d(%8)) ⌦ �

+
’
92�⌫

_ 9 � ⌦ (�3⌫3f ⌦ f(& 9 )) + _� ⌦ �
⌘
+�,d ⌦ +⌫,f |eki

=
’
d,f

?d,fa(G,S
�⌦d,�⌦f,|ekd,f i).
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Note that
Õ
d,f

?d,f = 1. In other words, the winning probability of eS is a convex combina-

tion of the winning probabilities of irreducible strategies S
�⌦d,�⌦f,|ekd,f i. It is easily verified that

a(G,S
�⌦d,�⌦f,|ekd,f i)  a(G, d,f). By assumption of the lemma a(G, d,f) < a⇤(G) except when

(d,f) = ( d̄, f̄). Now since eS is an optimal strategy, we have

?d,f =

8>>>>>><
>>>>>>:

1 (d,f) = ( d̄, f̄),

0 otherwise.

Therefore a(G, eS) = a(G,S
�⌦d,�⌦f,|ekd,f i) and hence S

�⌦ d̄,�⌦f̄,|ekd̄, f̄ i is an optimal strategy. From

the assumption of the lemma ,|ki is the unique state optimizing the strategy induced by ( d̄, f̄).

Therefore |ekd̄,f̄i = |junk0i |ki where both |junk0i and |ki are shared between Alice and Bob such

that |junk0i is the state of the register upon which the identities of Alice and Bob in the operators

(� ⌦ d)� ⌦ (� ⌦ f)⌫ are applied. In summary

|ekd,fi =
8>>>>>><
>>>>>>:

|junk0i |ki (d,f) = ( d̄, f̄),

0 otherwise.

(3.2.7)

Now using (3.2.5), it follows that

e
�8 ⌦ +⌫ |eki = +⇤�6� (%8)+� ⌦ +⌫ |eki,
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from which

+�
e
�8 ⌦ +⌫ |eki = +�+⇤�6� (%8)+� ⌦ +⌫ |eki.

Since +�+⇤
�

is a projection and +�e�8 ⌦+⌫ |eki and 6� (%8)+� ⌦+⌫ |eki are both unit vectors, it holds

that

+�
e
�8 ⌦ +⌫ |eki = 6� (%8)+� ⌦ +⌫ |eki

=
 
d,f

(�3�3d ⌦ d(%8)) ⌦ �3⌫32
f

|ekd,fi

=
�
|junk0i d̄(%8) ⌦ �3 f̄ |ki

�
�(d,f)<( d̄,f̄) 0

3�3
2
d
3⌫3

2
f

= |junki d̄(%8) ⌦ �3 f̄ |ki,

where the third equality follows from (3.2.7), and in the fourth equality |junki = |junk0i � 0 where

0 2 C3�3⌫ (
|⌧
�
| |⌧
⌫
|

3
d̄
3
f̄

�3d̄3 f̄) . Note that 3�3⌫ ( |⌧� | |⌧⌫ |
3d̄3 f̄

� 3d̄3f̄) is a positive integer because the degree

of an irreducible representation divides the order of the group. É

Corollary 3.2.5. If in addition to the assumptions of Lemma 3.2.4, it holds that for every optimal

strategy eS = ({e�8}, {e⌫9 }, |eki), 5 eS
�

and 5

eS
⌫

are |eki-representations, then G is a self-test for the

strategy S
d̄,f̄,|ki.

Note that all these results can be stated robustly using the notion of (Y, |ki)-representation, but

in this paper we focus our attention on exact rigidity. In this paper we use SOS to obtain the extra

assumption of Corollary 3.2.5 as seen in Sections 3.6 and 3.7.
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3.3 A generalization of CHSH

The CHSH game can also be viewed as an LCS game where the linear system, over multiplica-

tive Z2, is given by

G0G1 = 1,

G0G1 = �1.

The CHSH viewed as an LCS is first considered in [88]. We generalize this to a game G= over Z=

for each = � 2

G0G1 = 1,

G0G1 = l=.

As is the case for G2 = ⇠�(�, the classical value of G= is easily seen to be 0.75. In Section 3.4,

we exhibit quantum advantage by presenting a strategy S= showing that a⇤(G=) � a(G=,S=) =

1

2
+ 1

2= sin( c
2=
) >

1

2
+ 1

c
⇡ 0.81. In Section 3.5, we present the group ⌧= generated by the operators

in S=. In Section 3.7, we show that G3 is a self-test, and conjecture that this is true for all = � 2.

As defined in the preliminaries, conventionally, in an LCS game, Alice has to respond with an

assignment to all variables in her equation. It is in Alice’s best interest to always respond with

a satisfying assignment. Therefore, the referee could always determine Alice’s assignment to G1

from her assignment to G0. Hence, without loss of generality, in our games, Alice only responds

with an assignment to G0.
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Formally G= = ( [2], [2],Z=,Z=, c,+) where Z= = {1,l=, . . . ,l=�1

=
}, c is the uniform distri-

bution on [2] ⇥ [2], and

+ (0, 0, 0, 1) = 1 () 0 = 1,

+ (0, 1, 0, 1) = 1 () 01 = 1,

+ (1, 0, 0, 1) = 1 () 0 = 1,

+ (1, 1, 0, 1) = 1 () 01 = l=.

Consider the quantum strategy S given by the state |ki, and projective measurements {⇢0,0}02[=]

and {⇢1,0}02[=] for Alice, and {�0,1}12[=] and {�1,1}12[=] for Bob. Note that in our measurement

systems, we identify outcome 0 2 [=] with answer l0
=
2 Z=. As done in the preliminaries, de-

fine the generalized observables �0 =
Õ
=�1

8=0
l
8

=
⇢0,8, �1 =

Õ
=�1

8=0
l
8

=
⇢1,8, ⌫0 =

Õ
=�1

8=0
l
8

=
�0,8, ⌫1 =

Õ
=�1

8=0
l
8

=
�1,8. We derive an expression for the winning probability of this strategy in terms of the

these generalized observables. We do so by introducing the bias operator

B= = B= (�0, �1, ⌫0, ⌫1) =
=�1’
8=1

�
8

0
⌫
�8
0
+ �8

0
⌫
8

1
+ �8

1
⌫
�8
0
+ l�8

=
�
8

1
⌫
8

1
,

in which we dropped the tensor product symbol between Alice and Bob’s operators.

Proposition 3.3.1. Given the strategy S above, it holds that a (G=,S) = 1

4=
hk |B= |ki + 1

=
.
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Proof.

B= + 4� =
=�1’
8=0

�
8

0
⌫
�8
0
+ �8

0
⌫
8

1
+ �8

1
⌫
�8
0
+ l�8

=
�
8

1
⌫
8

1

=
=�1’
8=0

=�1’
0,1=0

l
8(0�1)
=

⇢0,0�0,1 + l8(0+1)=
⇢0,0�1,1 + l8(0�1)=

⇢1,0�0,1 + l8(0+1�1)
=

⇢1,0�1,1

=
=�1’
0,1=0

=�1’
8=0

l
8(0�1)
=

⇢0,0�0,1 + l8(0+1)=
⇢0,0�1,1 + l8(0�1)=

⇢1,0�0,1 + l8(0+1�1)
=

⇢1,0�1,1

= =
=�1’
0=0

⇢0,0�0,0 + ⇢0,0�1,�0 + ⇢1,0�0,0 + ⇢1,0�1,1�0

in which in the last equality we used the identity 1 + l= + . . . + l=�1

=
= 0. Also note that in �1,�0

and �1,1�0 second indices should be read mod =. Finally notice that

a(G,S) = 1

4
hk |

 
=�1’
0=0

⇢0,0�0,0 + ⇢0,0�1,�0 + ⇢1,0�0,0 + ⇢1,0�1,1�0

!
|ki.

É

3.4 Strategies for G=

In this section, we present quantum strategies S= for G= games. In Section 3.4.2, we show that

a(G=,S=) = 1

2
+ 1

2= sin( c
2=
) and that this value approaches 1

2
+ 1

c
from above as = tends to infinity. This

lower bounds the quantum value a⇤(G=), and proves that these games exhibit quantum advantage

with a constant gap >
1

c
� 1

4
. We also show that the states in these strategies have full-Schmidt

rank. Furthermore the states tend to the maximally entangled state as =!1.

We conjecture that S= are optimal and that the games G= are self-tests for S=. In Section 3.7,

we prove this for = = 3. Using the NPA hierarchy, we verify the optimality numerically up to

253



= = 7. If the self-testing conjecture is true, we have a family of games with one bit questions and

log(=) bits answers, that self-test entangled states of local dimension = for any =.

3.4.1 Definition of the strategy

Let f= = (0 1 2 . . . = � 1) 2 (= denote the cycle permutation that sends 8 to 8 + 1 mod =. Let

I= = l1/4
=

= 48c/2=. Let ⇡=, 9 = �= � 24 9 4
⇤
9

be the diagonal matrix with �1 in the ( 9 , 9) entry, and

1 everywhere else in the diagonal. Then let ⇡=,( :=
Œ

92( ⇡=, 9 , where ( ⇢ [=]. Finally, let -=

be the shift operator (also known as the generalized Pauli -), i.e., -=48 = 4f= (8) . For convenience,

we shall often drop the = subscript when the dimension is clear from context, and so just refer to

I=,⇡=, 9 ,⇡=,(, -= as I,⇡ 9 ,⇡(, - , respectively.

Let H� = H⌫ = C=. Then Alice and Bob’s shared state in S= is defined to be

|k=i =
1

W=

=�1’
8=0

(1 � I=+28+1) |f8 (0),f�8 (0)i 2 H� ⌦H⌫,

where W= =
q

2= + 2

sin( c
2=
) is the normalization factor. The generalized observables in S= are

�0 = -

�1 = I2⇡0-

⌫0 = -

⌫1 = I2⇡0-
⇤
.
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Example 3.4.1. In S2, Alice and Bob’s observables are

�0 = fG =
©≠≠≠
´
0 1

1 0

™ÆÆÆ
¨
, �1 = fH =

©≠≠≠
´
0 �8

8 0

™ÆÆÆ
¨
,

⌫0 = fG =
©≠≠≠
´
0 1

1 0

™ÆÆÆ
¨
, ⌫1 = fH =

©≠≠≠
´
0 �8

8 0

™ÆÆÆ
¨
,

and their entangled state is

|k2i =
1p

4 + 2

p
2

✓✓
1 + 1 � 8
p

2

◆
|00i �

✓
1 + 1 + 8
p

2

◆
|11i

◆
.

One can verify that this indeed give us the quantum value for CHSH 1

2
+
p

2

4
.

Example 3.4.2. In S3, Alice and Bob’s observables are

�0 =

©≠≠≠≠≠≠≠
´

0 0 1

1 0 0

0 1 0

™ÆÆÆÆÆÆÆ
¨

, �1 =

©≠≠≠≠≠≠≠
´

0 0 �I2

I
2

0 0

0 I
2

0

™ÆÆÆÆÆÆÆ
¨

,

⌫0 =

©≠≠≠≠≠≠≠
´

0 0 1

1 0 0

0 1 0

™ÆÆÆÆÆÆÆ
¨

, ⌫1 =

©≠≠≠≠≠≠≠
´

0 �I2 0

0 0 I
2

I
2

0 0

™ÆÆÆÆÆÆÆ
¨

,

with the entangled state

|k3i =
1
p

10

⇣
(1 � I4) |00i + 2|12i + (1 + I2) |21i

⌘
.
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One can compute that hk |B3 |ki = 6. Hence, by Proposition 3.3.1, we have a⇤(G3) � 5

6
.

3.4.2 Analysis of the strategy

In this section, we prove that S= is a quantum strategy and calculate its winning probability.

We then prove that the entanglement entropy of |k=i approaches the maximum entropy as = tends

to infinity.

Proposition 3.4.3. For = 2 N, it holds that
Õ
=�1

9=0
I

2 9+=+1

=
=

Õ
=�1

9=0
I
�(2 9+=+1)
=

.

Proof. A direct computation gives

=�1’
9=0

I
2 9+=+1 =

2I
=+1

1 � I2
=

2I
�=�1

1 � I�2
=
=�1’
9=0

I
�(2 9+=+1)

,

where we have used the fact that I2= = �1. É

Proposition 3.4.4. For = 2 N, it holds that
Õ
=�1

9=0
I

2 9+=+1

=
= � 1

sin( c
2=
) .

Proof. We handle the even and odd case separately, and in both cases we use the well-known

identity for the Dirichlet kernel mentioned in preliminaries. For odd =

�
=�1’
9=0

I
2 9+=+1 =

=�1’
9=0

I
2 9�(=�1) =

=�1

2’
9=� =�1

2

I
2 9 =

=�1

2’
9=� =�1

2

4

c8 9

=

= 2cD =�1

2

⇣
c

=

⌘
=

sin

⇣⇣
=�1

2
+ 1

2

⌘
c

=

⌘
sin

�
c

2=

� =
1

sin
�
c

2=

� .
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For even =

�
=�1’
9=0

I
2 9+=+1 = I

=’
9=0

I
2 9�= � I=+1 = I

=

2’
9=� =

2

I
2 9 � I=+1 = 2cID =

2

⇣
c

=

⌘
� I=+1

=
⇣
cos

⇣
c

2=

⌘
+ 8 sin

⇣
c

2=

⌘⌘ sin

⇣⇣
=

2
+ 1

2

⌘
c

=

⌘
sin

�
c

2=

� � 8
⇣
cos

⇣
c

2=

⌘
+ 8 sin

⇣
c

2=

⌘⌘

=
cos

2
�
c

2=

�
+ sin

2
�
c

2=

�
sin

�
c

2=

� =
1

sin
�
c

2=

� .

É

Now let’s observe a commutation relation between ⇡ 9 and -: .

Proposition 3.4.5. -8⇡ 9 = ⇡f
8 ( 9)-

8, for all 8, 9 2 [=].

Proof. It suffices to prove -⇡ 9 = ⇡f( 9)- . We show this by verifying -⇡ 94: = ⇡f( 9)-4: for all

: 2 [=].

-⇡ 94: = (�1)X 9 ,:4
f(:) = (�1)Xf ( 9 ) ,f (: )

4
f(:) = ⇡f( 9)-4:

É

Now we prove the strategy defined in section 3.4.1 is a valid quantum strategy.

Proposition 3.4.6. �0, �1, ⌫0, ⌫1 are order-= generalized observables and |k=i is a unit vector.

Proof. Observe that

�
=

0
= ⌫=

0
= -= = �,
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also

�
=

1
= (I2⇡0-)= = I2=⇡{0,f1 (0),...,f=�1 (0)}-

= = (�1) (��)� = � .

Similarly,

⌫
=

1
= (I2⇡0-

⇤)= = I2= (-⇤)=⇡{0,f1 (0),...,f=�1 (0)} = (�1)� (��) = � .

It is an easy observation that these operators are also unitary. To see that |k=i is a unit vector

write

=�1’
8=0

|1 � I=+28+1 |2 =
=�1’
8=0

✓
1 � cos

✓
c(= + 28 + 1)

2=

◆◆2

+ sin

✓
c(= + 28 + 1)

2=

◆2

=
=�1’
8=0

2

✓
1 � cos

✓
c(= + 28 + 1)

2=

◆◆

= 2= �
=�1’
8=0

<(I=+28+1)

= 2= + 2

sin(c/2=)

= W2

=
,

where we have used Proposition 3.4.4 in the third equality.

É

Lemma 3.4.7. The entangled state |ki is an eigenvector for the bias B =
Õ
=�1

9=1
�
9

0
⌫
� 9
0

+ �9
0
⌫
9

1
+

�
9

1
⌫
� 9
0

+ I�4 9
�
9

1
⌫
9

1
with eigenvalue 2= � 4 + 2

sin( c
2=
) .

Proof. For the sake of brevity, we drop the normalization factor W= in the derivation below, and let

|ii = W= |k=i. We write
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B|ii = ©≠
´
=�1’
9=1

�
9

0
⌦ ⌫� 9

0
+ �9

0
⌦ ⌫9

1
+ �9

1
⌦ ⌫� 9

0
+ I�4 9

�
9

1
⌦ ⌫9

1

™Æ
¨
|ii

= ©≠
´
=�1’
9=1

(- ⌦ -⇤) 9 + I2 9 (- ⌦ ⇡0-
⇤) 9 + I2 9 (⇡0- ⌦ -⇤) 9 + (⇡0- ⌦ ⇡0-

⇤) 9™Æ
¨
|ii.

Lemma 3.4.8. (- ⌦ ⇡0-
⇤) 9 |ii = (⇡0- ⌦ -⇤) 9 |ii and (- ⌦ -⇤) 9 |ii = (⇡0- ⌦ ⇡0-

⇤) 9 |ii.

Proof. It suffices to show these identities for 9 = 1 on states |f8 (0),f�8 (0)i, for all 8, in place of

|ii. The result then follows by simple induction. In other words, we prove

(- ⌦ ⇡0-
⇤) |f8 (0),f�8 (0)i = (⇡0- ⌦ -⇤) |f8 (0),f�8 (0)i,

(- ⌦ -⇤) |f8 (0),f�8 (0)i = (⇡0- ⌦ ⇡0-
⇤) |f8 (0),f�8 (0)i.

Note that � ⌦ ⇡0 |f8+1(0),f�8�1(0)i = ⇡0 ⌦ � |f8+1(0),f�8�1(0)i since �8 � 1 = 0 mod = iff

8 + 1 = 0 mod =. Therefore

(- ⌦ ⇡0-
⇤) |f8 (0),f�8 (0)i = (� ⌦ ⇡0) |f8+1(0),f�8�1(0)i

= (⇡0 ⌦ �) |f8+1(0),f�8�1(0)i

= (⇡0- ⌦ -⇤) |f8 (0),f�8 (0)i.

The other identity follows similarly. É
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Now we write

B|ii = 2
©≠
´
=�1’
9=1

(- ⌦ -⇤) 9 + I2 9 (⇡0- ⌦ -⇤) 9™Æ
¨
|ii

= 2

=�1’
9=1

⇣
1 + I2 9 (⇡ [ 9] ⌦ �)

⌘
(- ⌦ -⇤) 9 |ii

= 2

=�1’
9=1

=�1’
8=0

⇣
1 � I28+=+1

⌘ ⇣
1 + I2 9 (⇡ [ 9] ⌦ �)

⌘
(- ⌦ -⇤) 9 |f8 (0),f�8 (0)i

= 2

=�1’
9=1

=�1’
8=0

⇣
1 � I28+=+1

⌘ ⇣
1 + I2 9 (⇡ [ 9] ⌦ �)

⌘
|f8+ 9 (0),f�(8+ 9) (0)i,

where in the second equality we use Proposition 3.4.5, and in the third equality we just expanded

|ii. Note that

(⇡ [ 9] ⌦ �) |f8+ 9 (0),f�(8+ 9) (0)i =

8>>>>>><
>>>>>>:

�|f8+ 9 (0),f�(8+ 9) (0)i 8 2 [= � 9 , = � 1],

|f8+ 9 (0),f�(8+ 9) (0)i 8 2 [0, = � 9 � 1],

and we use this to split the sum

B|ii = 2

=�1’
9=1

 
=� 9�1’
8=0

⇣
1 � I28+=+1

⌘ ⇣
1 + I2 9

⌘
|f8+ 9 (0),f�(8+ 9) (0)i

+
=�1’
8==� 9

⇣
1 � I28+=+1

⌘ ⇣
1 � I2 9

⌘
|f8+ 9 (0),f�(8+ 9) (0)i

!

= 2

=�1’
8=0

 
=�8�1’
9=1

⇣
1 � I28+=+1

⌘ ⇣
1 + I2 9

⌘
|f8+ 9 (0),f�(8+ 9) (0)i

+
=�1’
9==�8

⇣
1 � I28+=+1

⌘ ⇣
1 � I2 9

⌘
|f8+ 9 (0),f�(8+ 9) (0)i

!
,
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and make a change of variable A = 8 + 9 to get

B|ii = 2

=�1’
8=0

 
=�1’
A=8+1

⇣
1 � I28+=+1

⌘ ⇣
1 + I2(A�8)

⌘
|fA (0),f�A (0)i

+
=+8�1’
A==

⇣
1 � I28+=+1

⌘ ⇣
1 � I2(A�8)

⌘
|fA (0),f�A (0)i

!
.

We have I2(A�8) = I
2(A�=+=�8) = I

2=
I

2(A�=�8) = �I2(A�=�8) and fA (0) = f
A+= (0), so by another

change of variable in the second sum where we are summing over A = [=, = + 8 � 1] we obtain

B|ii = 2

=�1’
8=0

 
=�1’
A=8+1

⇣
1 � I28+=+1

⌘ ⇣
1 + I2(A�8)

⌘
|fA (0),f�A (0)i

+
8�1’
A=0

⇣
1 � I28+=+1

⌘ ⇣
1 + I2(A�8)

⌘
|fA (0),f�A (0)i

!

= 2

=�1’
8=0

 
=�1’
A=0

⇣
1 � I28+=+1

⌘ ⇣
1 + I2(A�8)

⌘
|fA (0)f�A (0)i � 2

⇣
1 � I28+=+1

⌘
|f8 (0)f�8 (0)i

!

= 2

=�1’
8=0

 
=�1’
A=0

⇣
1 � I28+=+1

⌘ ⇣
1 + I2(A�8)

⌘
|fA (0)f�A (0)i

!
� 4|ii

= 2

=�1’
A=0

|fA (0)f�A (0)i
 
=�1’
8=0

⇣
1 � I28+=+1

⌘ ⇣
1 + I2(A�8)

⌘!
� 4|ii.

We also have

=�1’
8=0

⇣
1 � I28+=+1

⌘ ⇣
1 + I2(A�8)

⌘
=
=�1’
8=0

1 � I2A+=+1 + I2(A�8) � I28+=+1

=
=�1’
8=0

1 � I2A+=+1 + I2(A�8) � I�(28+=+1)

= (1 � I2A+=+1)
=�1’
8=0

1 � I�(28+=+1)

=
✓
= + 1

sin( c
2=
)

◆
(1 � I2A+=+1),
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where in the second and last equality we used Propositions 3.4.3 and 3.4.4, respectively. Putting

these together, we obtain

B|ii = 2

✓
= + 1

sin( c
2=
)

◆
=�1’
A=0

(1 � I2A+=+1) |fA (0)f�A (0)i � 4|ii

=
✓
2= � 4 + 2

sin( c
2=
)

◆
|ii.

É
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Figure 3.2: The figure on the left illustrates the fast convergence rate of the winning probabilities as they
approach the limit 1/2 + 1/c. The figure on the right illustrates the ratio of the entanglement entropy to the
maximum entanglement entropy of the states for =  40.

Next we calculate a(G=,S=), its limit as = grows and the entanglement entropy of states |k=i.

See Figure 3.2.

Theorem 3.4.9. a(G=,S=) = 1

2
+ 1

2= sin( c
2=
) .
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Proof.

a(G=,S=) =
1

4=
hk |B|ki + 1

=

=
1

4=
hk |

 
2= � 4 + 2

sin
�
c

2=

�
!
|ki + 1

=

=
1

4=

 
2= � 4 + 2

sin
�
c

2=

�
!
+ 1

=

=
1

2
+ 1

2= sin
�
c

2=

� .

É

Theorem 3.4.10. The following hold

1. lim=!1 a(G=,S=) = 1/2 + 1/c.

2. a(G=,S=) is a strictly decreasing function.

3. The games G= exhibit quantum advantage, i.e., for = > 1

a
⇤(G=) > 1/2 + 1/c > 3/4 = a(G=).

Proof. For the first statement, it suffices to see that

lim
G!1

1

2G sin
�
c

2G

� = lim
G!1

1

2G

sin
�
c

2G

� = lim
G!1

�1

2G2

� c cos( c
2G
)

2G2

=
1

c

.

For the second statement, we show that the function 5 (G) = 2G sin(c/2G) is strictly increasing

for G � 1. We have 5
0(G) = 2 sin(c/2G) � c cos(c/2G)/G. Then 5

0(G) > 0 is equivalent to
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tan(c/2G) � c/2G. This latter statement is true for all G � 1. The third statement follows from the

first two. É

Theorem 3.4.11. States |k=i have full Schmidt rank and the ratio of entanglement entropy to

maximum entangled entropy, i.e., (k=/log(=) approaches 1 as =!1.

Proof. Recall that

|k=i =
1

W=

=�1’
8=0

⇣
1 � I28+=+1

⌘
|f8 (0),f�8 (0)i 2 H� ⌦H⌫.

Let |8�i = 1�I28+=+1

k1�I28+=+1k |f
8 (0)i and |8⌫i = |f�8 (0)i. Clearly {8�}8 and {8⌫}8 are orthonormal bases

for H� and H⌫, respectively. The Schmidt decomposition is now given by

|k=i =
1

W=

=�1’
8=0

��1 � I28+=+1
�� |8�8⌫i.

To calculate the limit of (k=/log(=) first note that

(k=

log(=) = �
Õ
=�1

8=0

��1 � I28+=+1
��2

log
k1�I28+=+1k2

W
2
=

W
2
=

log(=)

= �

Õ
=�1

8=0

��1 � I28+=+1
��2

⇣
log

��1 � I28+=+1
��2 � log W

2

=

⌘
W

2
=

log(=)

� �
log(4)Õ=�1

8=0

��1 � I28+=+1
��2

W
2
=

log(=)
+

log W
2

=

Õ
=�1

8=0

��1 � I28+=+1
��2

W
2
=

log(=)

= � log(4)
log(=) +

log W
2

=

log(=)

where for the inequality we used the fact that
��1 � I28+=+1

��  2, and for the last equality we used
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the identity W2

=
=

Õ
=�1

8=0

��1 � I28+=+1
��2. So it holds that

� log(4)
log(=) +

log W
2

=

log(=) 
(k=

log(=)  1.

By simple calculus lim=!1
log W

2
=

log(=) �
log(4)
log(=) = 1. Therefore by squeeze theorem lim=!1

(k=

log(=) = 1.

É

3.5 Group structure of S=

Let �= = h�0, �1i be the group generated by Alice’s observables in S=. Note that since

(�1�
⇤
0
)2 = I4

=
�, we could equivalently define �= = h�0, �1, I

4

=
�i. Also let

⌧= =
D
%0, %1, � | %=

0
, %

=

1
, �
=

, [�, %0], [�, %1], �8
�
%
8

0
%
�8
1

�2 for 8 = 1, 2, . . . , b=/2c
E
.

In this section we show that �= � ⌧=. So it also holds that �= is a representation of ⌧=.

We conjecture that G= is a self-test for ⌧=, in the sense that every optimal strategy of G= is a

|ki-representation of ⌧=. In Section 3.7, we prove this for = = 3.

Remark 3.5.1. Note that the relations �8
⇣
%
8

0
%
�8
1

⌘2

holds in ⌧= for all 8.

The following lemma helps us develop a normal form for elements of ⌧=.

Lemma 3.5.2. For all 8, 9 , the elements %8
0
%
�8
1

and %9
0
%
� 9
1

commute.
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Proof.

�
%
8

0
%
�8
1

� �
%
9

0
%
� 9
1

�
= ��8%8

1
%
�8
0
%
9

0
%
� 9
1

= ��8%8
1
%
9�8
0
%
� 9
1

= ��8%8
1

�
%
9�8
0
%
�( 9�8)
1

�
%
�8
1

= ��8�( 9�8)%8
1
%
9�8
1
%
�( 9�8)
0

%
�8
1

= �� 9
�
%
9

1
%
� 9
0

� �
%
8

0
%
�8
1

�

= �� 9
�
�
9

%
9

0
%
� 9
1

� �
%
8

0
%
�8
1

�

=
�
%
9

0
%
� 9
1

� �
%
8

0
%
�8
1

�
.

É

Lemma 3.5.3. For every 6 2 ⌧= there exist 8, 9 2 [=] and @: 2 {0, 1} for : = 1, 2, . . . , = � 1 such

that

6 = �8% 9
0

�
%0%

�1

1

�
@1
�
%

2

0
%
�2

1

�
@2 · · ·

�
%
=�1

0
%
�(=�1)
1

�
@=�1

.

Proof. First note that � is central, therefore we can write 6 in ⌧= as

6 = �8% 91
0
%
92

1
%
93

0
· · · %9:

1
,

for some : 2 N, 8 2 [=], 9; 2 [=] where ; = 1, 2, . . . , : . Without loss of generality, let : be even.
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We perform the following sequence of manipulations

6 = �8% 91
0
%
92

1
%
93

0
· · · %9:�2

1
%
9:�1

0
%
9:

1

= �8% 91
0
%
92

1
%
93

0
· · · %9:�2

1
%
9:�1

0
%
9:

0

�
%
� 9:
0
%
9:

1

�

= �8% 91
0
%
92

1
%
93

0
· · · %9:�2

1
%
9:�1+ 9:
1

�
%
�( 9:�1+ 9:)
1

%
9:�1+ 9:
0

� �
%
� 9:
0
%
9:

1

�

= �8�( 9:�1+ 9:)
%
91

0
%
92

1
%
93

0
· · · %9:�2+ 9:�1+ 9:

1

�
%
�( 9:�1+ 9:)
0

%
9:�1+ 9:
1

� �
%
� 9:
0
%
9:

1

�

= · · ·

= �8�B%�B1
0

�
%
B2

0
%
�B2
1

�
· · ·

�
%
B:�1

0
%
�B:�1

1

� �
%
B:

0
%
�B:
1

�
,

where B; = �
Õ
:

C=; 9C and B = �Õ(:�2)/2
C=1

B2C+1. Then we use the commutation relationship from

lemma 3.5.2 to group the terms with the same %0 and %1 exponents, and use the relation �8 (%8
0
%
�8
1
)2

to reduce each term to have an exponent of less than 1, introducing extra � terms as needed. Finally

after reducing the exponents of � and %0, knowing that they are all order =, we arrive at the desired

form. É

Corollary 3.5.4. |⌧= |  =2
2
=�1 for all = 2 N.

Proof. Follows from lemma 3.5.3. É

Lemma 3.5.5. |�= | � =2
2
=�1 for all = 2 N.

Proof. We lower bound the order of the group �= by exhibiting =2
2
=�1 distinct elements in the

group. We divide the proof into cases depending on the parity of =.

First note that I2⇡8 2 �= for all 8 2 [=] since

I
�48
�
8

1
�
�8
0
�
8+1

1
�
�(8+1)
0

= I�48
I

28
⇡ [8]-

8

-
�8
I

2(8+1)
⇡ [8+1]-

8+1
-
�(8+1) = I2⇡8,
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where in the first equality we use Proposition 3.4.5. This allows us to generate I2⇡80⇡81 · · ·⇡8:�1

if : is odd via

I
�4(:�1)/2(I2⇡80) (I2⇡81) · · · (I2⇡8:�1

) = I2⇡80⇡81 · · ·⇡8:�1
, (1)

and ⇡80⇡81 · · ·⇡8:�1
if : is even by

I
�4(:/2) (I2⇡80) (I2⇡81) · · · (I2⇡8:�1

) = ⇡80⇡81 · · ·⇡8:�1
. (2)

Let = be odd. From (2) we will be able to generate elements of the form I
48
⇡
@0

0
⇡
@1

1
· · ·⇡@=�1

=�1
-
9

where there are an even number of nonzero @: for 8, 9 2 [=]. It should be clear that the elements

with 8 < 80 2 {0, 1, . . . , (= � 1)/2} will be distinct. For 8 > (= � 1)/2, we simply note that we can

factor out a I2= = �1 and so we get elements of the form I
48
0+2
⇡
@0

0
⇡
@1

1
· · ·⇡@=�1

=�1
-
9 , where there

are an odd number of nonzero @: for 80 2 {0, 1, . . . , (= � 3)/2}, 9 2 [=]. Each of these will be

distinct from each other as, again, the powers of the =th root of unity will be distinct, and distinct

from the previous case by the parity of the sign matrices. Therefore we are able to lower-bound

|⇠= | by =2
2
=�1.

If = is even, we will still be able to generate elements of the form I
48
⇡
@0

0
⇡
@1

1
· · ·⇡@=�1

=�1
-
9

where there are an even number of nonzero @: for 8, 9 2 [=]. However, note that for 8 >

(= � 2)/2, we begin to generate duplicates. So from (1) we can generate elements of the form

I
48+2

⇡
@0

0
⇡
@1

1
· · ·⇡@=�1

=�1
-
9 for 8, 9 2 [=] and an odd number of nonzero @: . These will be distinct

from the previous elements by the parity of the sign matrices but again will begin to generate du-

plicates after 8 > (= � 2)/2. Therefore we have the lower-bound of =

2
=2

=�1 + =

2
=2

=�1 = =
2
2
=�1

elements. É
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Lemma 3.5.6. There exists a surjective homomorphism 5 : ⌧= ! �=.

Proof. Let us define 5 : {�, %0, %1} ! �= by 5 (�) = I
4
�, 5 (%0) = �0, 5 (%1) = �1. We show

that 5 can be extended to a homomorphism from ⌧= to �=. Consider the formal extension e
5 of 5

to the free group generated by {�, %0, %1}. We know from the theory of group presentations that 5

can be extended to a homomorphism if and only if e
5 (A) = � for all relation A in the presentation of

⌧=.

It is clear that e
5 respects the first five relations of⌧=. Now we check the last family of relations:

e
5 (�8 (%8

0
%
�8
1
)2) = I48 (�8

0
�
�8
1
)2

= I48 (-8I�28 (⇡0-)�8)2

= (-8-�8⇡ [8])2

= ⇡2

[8]

= � .

The homomorphism 5 is surjective because �0, �1 generate the group �=. É

Theorem 3.5.7. �= � ⌧= for all = 2 N.

Proof. Since 5 is surjective, then =2
2
=�1  |�= |  |⌧= |  =

2
2
=�1. Thus |�= | = |⌧= |, so the

homomorphism is also injective. É

Remark 3.5.8. What about the group generated by Bob’s operators in S=? We can define

⌧
0
=
=

D
&0,&1, � | &=

0
,&

=

1
, �
=

, [�,&0], [�,&1], �8
�
&
�8
0
&
�8
1

�2 for 8 = 1, 2, . . . , b=/2c
E
.
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and with a similar argument as in Theorem 3.5.7 show that h⌫0, ⌫1, I
4

=
�i � ⌧0

=
. It is now easily

verified that the mapping %0 7! &
�1

0
, %1 7! &1, � 7! � is an isomorphism between ⌧= and ⌧0

=
. So

Alice and Bob’s operator generate the same group, that is h�0, �1, I
4

=
�i = h⌫0, ⌫1, I

4

=
�i. The latter

fact could also be verified directly.

3.6 Sum of squares framework

In this paper, the sum of squares (SOS) proofs are used to demonstrate that certain non-

commutative polynomials are positive semidefinite. We use this approach to upper bound the

quantum value of non-local games and to establish rigidity. This approach has been used previ-

ously in the literature, e.g., [103, 91]. We illustrate the basics of this framework by going over the

proof of optimality and rigidity of CHSH. At the end of this section, we extend this method to deal

with the complexities of G= and similar games.

By Proposition 3.3.1, the probability of winning G2 using a strategy consisting of a state |ki

and observables �0, �1 for Alice and ⌫0, ⌫1 for Bob is given by the expression

1

2
+ 1

8
hk | (�0⌫0 + �0⌫1 + �1⌫0 � �1⌫1) |ki.

To prove a⇤(G2) = 1

2
+
p

2

4
, we just need to show that

2

p
2� � (�0⌫0 + �0⌫1 + �1⌫0 � �1⌫1) ⌫ 0,

for any observables �0, �1, ⌫0, ⌫1. This immediately follows from the following SOS decomposi-
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tion

2

p
2� � (�0⌫0 + �0⌫1 + �1⌫0 � �1⌫1) =

p
2

4
(�0 + �1 �

p
2⌫0)2 +

p
2

4
(�0 � �1 �

p
2⌫1)2

.

(3.6.1)

Next we use this SOS and the Gowers-Hatami theorem to establish that CHSH is a self-test for the

strategy S2 given in Example 3.4.1. We learned in Section 3.5 that �0 = ⌫0 = fG and �1 = ⌫1 = fH

generate

⌧2 =
⌦
%0, %1, � | %2

0
, %

2

1
, �

2
, [�, %0], [�, %1], � (%0%1)2

↵
,

which is in fact the dihedral group ⇡4 (also known as the Weyl-Heisenberg group).

The strategy S2 gives a representation of ⇡4 as seen by the homomorphism � 7! ��, %0 7! �0,

and %1 7! �1. Our first step in proving rigidity is to show that a weaker statement holds for any

optimal strategy ({e�0,
e
�1}, {e⌫0,

e⌫1}, |eki) where |eki 2 H� ⌦H⌫ and H� = C3�,H⌫ = C3⌫ . More

precisely, we show that any optimal strategy gives rise to a |eki-representation. By optimality

hek | (2p2� � (e�0
e⌫0 + e

�0
e⌫1 + e

�1
e⌫0 � e

�1
e⌫1)) |eki = 0.

Then by (3.6.1)

e⌫0 |eki = 1
p

2

(e�0 + e
�1) |eki,

e⌫1 |eki = 1
p

2

(e�0 � e
�1) |eki.
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These then let us derive the state-dependent anti-commutation relation

(e⌫0
e⌫1 + e⌫1

e⌫0) |eki = 1
p

2

(e⌫0(e�0 � e
�1) + e⌫1(e�0 + e

�1)) |eki
=

1
p

2

((e�0 � e
�1)e⌫0 + (e�0 + e

�1)e⌫1) |eki
=

1

2
((e�0 � e

�1) (e�0 + e
�1) + (e�0 + e

�1) (e�0 � e
�1)) |eki

= 0,

where in the second equality we used the fact that Alice and Bob’s operators commute. Similarly

we have that

(e�0
e
�1 + e

�1
e
�0) |eki = 0.

Define the functions 5� : ⇡4 ! U3�
(C), 5⌫ : ⇡4 ! U3⌫

by

5� (�8% 90%
:

1
) = (�1)8e�9

0
e
�
:

1
,

5⌫ (�8% 90%
:

1
) = (�1)8e⌫9

0
e⌫:

1
,

for all 8, 9 , : 2 [2]. This is well-defined because every element of ⇡4 can be written uniquely as

�
8
%
9

0
%
:

1
(See Section 3.5). Next we show that 5� is a |eki-representation, and a similar argument

holds for 5⌫. We show that for all 81, 91, :1, 82, 92, :2 2 [2]

5� (�81%910
%
:1

1
) 5� (�82%920

%
:2

1
) |ki = 5� ((�81%910

%
:1

1
) (�82%92

0
%
:2

1
)) |ki

= 5� (�81+82+:1 92
%
91+ 92
0

%
:1+:2

1
) |ki.
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We prove this as follows

5� (�81%910
%
:1

1
) 5� (�82%920

%
:2

1
) |ki = ((�1)81 e�91

0
e
�
:1

1
) ((�1)82 e�92

0
e
�
:2

1
) |ki

= (�1)81+82+:2 92 e
�
91

0
e
�
:1+:2

1
e
�
92

0
|ki

= (�1)81+82+:1 92 e
�
91+ 92
0

e
�
:1+:2

1
|ki

= 5� (�81+82+:1 92
%
91+ 92
0

%
:1+:2

1
) |ki,

where in lines 2 and 3, we make essential use of the fact that the exponents are modulo 2.

The representation theory of ⇡4 is simple. There are four irreducible representations of dimen-

sion one: These are given by %0 7! (�1)8, %1 7! (�1) 9 , � 7! 1 for 8, 9 2 [2]. The only irreducible

representation of dimension larger than one is given by

d(%0) = fG , d(%1) = fH, d(�) = �� .

Among these, d is the only irreducible representation that gives rise to an optimal strategy for

CHSH. In addition |k2i is the unique state that maximizes a(CHSH,S
d,d,|ki). This follows since

|k2i is the unique eigenvector associated with the largest eigenvalue of B2(fG ,fH,fG ,fH). The

rigidity of CHSH follows from Corollary 3.2.5.

Now we propose a general framework for proving rigidity of G= and similar games. This

framework extends the methods demonstrated in the CHSH example to deal with more complex

games. For concreteness, we focus on G=. We use Corollary 3.2.5 to prove rigidity. This requires

us to ascertain two facts about the game G:

1. Every optimal strategy induces |ki-representations of some groups ⌧� and ⌧⌫.
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2. There is a unique pair of irreducible representations d,f of ⌧�,⌧⌫, respectively, such that

a(G, d,f) = a⇤(G).

The first step is to obtain algebraic relations (i.e., groups ⌧� and ⌧⌫) between the observables of

optimal strategies. Suppose we found some SOS decomposition

_=� � B= (00, 01, 10, 11) =
’
:

): (00, 01, 10, 11)⇤): (00, 01, 10, 11),

where B= is the bias polynomial for G= and _= = 4=a
⇤(G=) � 4. This equality is over

C⇤h00, 01, 10, 11i/h0=8 � 1, 1
=

9
� 1, 081 9 � 0 9 18 : 88, 9 2 {0, 1}i

where C⇤h00, 01, 10, 11i is the ring of noncommutative polynomials equipped with adjoint, and

h0=
8
� 1, 1

=

9
� 1, 081 9 � 0 9 18 : 88, 9 2 {0, 1}i is the ideal that forces Alice and Bob’s operators to

form a valid strategy.

For any optimal strategy ({�0, �1}, {⌫0, ⌫1}, |ki), it holds that

�
_=� � B= (�0, �1, ⌫0, ⌫1)

�
|ki = 0.

So it must also hold that ): (�0, �1, ⌫0, ⌫1) |ki = 0. Let ("9 (�0, �1) � �) |ki = 0 be all the

relations derived from ): such that "8 are monomials only in Alice’s operators. Similarly let

(#9 (�0, �1) � �) |ki = 0 be all the monomial relations involving only Bob’s operators. We call
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"8, #9 the group relations. Define groups

⌧� = h%0, %1 : "8 (%0, %1)i, ⌧⌫ = h&0,&1 : #9 (&0,&1)i.

In the case of G=, we in fact have ⌧� = ⌧⌫ = ⌧=.1 Next, prove that, for all optimal strategies,

the functions 5�, 5⌫ defined by 5� (%8) = �8 and 5⌫ (& 9 ) = ⌫9 (as in the preliminaries) are |ki-

representations of ⌧�,⌧⌫, respectively.

To prove the second assumption, one approach is the brute force enumeration of irreducible

representation pairs. A more practical approach, when dealing with families of games, is to

demonstrate uniqueness of the pair of optimal irreducible representations using ring relations. Let

'8 (�0, �1) |ki = 0 be all the relations derived from ): . We call '8 (�0, �1) |ki = 0 ring relations.

They are allowed to be arbitrary polynomials (as opposed to monomials in the case of group rela-

tions). Similarly let ( 9 (⌫0, ⌫1) |ki = 0 be all the relations derived from ): involving only Bob’s

operators. Then show that there is a unique irreducible representation d of ⌧� (resp. f of ⌧⌫) sat-

isfying the ring relations, i.e., '8 (d(%0), d(%1)) = 0 (resp. (8 (f(&0),f(&1)) = 0). Note that here

we require the stronger constraint '8 (d(%0), d(%1)) = 0 as opposed to '8 (d(%0), d(%1)) |ki = 0.2

In some special cases, e.g., games G=, there is one ring relation that rules them all. For G= there

is a unique irreducible representation of⌧= satisfying the ring relation (�=+(=�2)�) |ki = 0 where

�= = �= (�0, �1) = l
=�1’
8=0

�
8

0
�1�

(=�8�1)
0

. (3.6.2)

1In Section 3.5, we gave a presentation for ⌧= using three generators, but in fact one could obtain a presentation
using only two generators.

2The intuition behind this step is the one-to-one correspondence between the group representations of ⌧� and the
ring representations of the group ring C[⌧�]. The optimal pair of irreducible representations are in fact irreducible
representations of rings C[⌧�]/h'8 (%0, %1)i and C[⌧⌫]/h( 9 (&0,&1)i.
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For example in the case of ⌧5, there are 25 degree one irreducible representations given by

%0 7! l
8

5
, %1 7! l

9

5
, � 7! l

2( 9�8) for all 8, 9 2 [5]. There are also 15 irreducible representations

of degree five: For each 8 2 [5], there are three irreducible representations sending � ! l
8

5
�5.

Among these 40 irreducible representations only one satisfies the ring relation (�5 + 3�) |ki = 0.

This unique irreducible representation is one of the three irreducible representations mapping � 7!

l5�5.3

In section 3.8, we show that in the special case of pseudo-telepathic games, this framework

reduces to the solution group formalism of Cleve, Liu, and Slofstra [99]. The group derived from

the SOS is the solution group, and the analogue of the ring relation that hones in on the optimal

irreducible representation d is the requirement that d(�) < �.

In the next section, we use the SOS framework to give a full proof of the rigidity of G3. While

omitted, the cases of G4,G5 follow similarly. The SOS decompositions of B4,B5 are comparatively

long and tedious.

3.7 Optimality and rigidity for G3

In this section, we show that S3 is optimal, and therefore a⇤(G3) = 5/6. We also show that G3

is a self-test for the strategy S3. We obtain these results by obtaining algebraic relations between

operators in any optimal strategy using an SOS decomposition for B3.
3Interestingly, cousin games of G5, defined using systems of equation G0G1 = 1, G0, G1 = l8 for 8 2 [5], generate

the same group ⌧5. For every 8, the unique optimal irreducible representation strategy is one of the three irreducible
representations mapping � 7! l

8

5
�5.
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3.7.1 Optimality of S3

For every operator �8, ⌫9 for which �3

8
= ⌫3

9
= � and [�8, ⌫9 ] = 0, we have the following SOS

decomposition:

6� � �0⌫
⇤
0
� �⇤

0
⌫0 � �0⌫1 � �⇤0⌫

⇤
1
� �1⌫

⇤
0
� �⇤

1
⌫0 � l⇤�1⌫1 � l�⇤1⌫

⇤
1

= _1((⇤1(1 + (⇤2(2) + _2()⇤1)1 + )⇤2)2) + _3()⇤3)3 + )⇤4)4) + _4()⇤5)5 + )⇤6)6), (3.7.1)

where

(1 = �0 + l�1 + l⇤⌫0 + l⌫⇤1,

(2 = �⇤
0
+ l⇤�⇤

1
+ l⌫⇤

0
+ l⇤⌫1,

)1 = �0⌫
⇤
0
+ 08�⇤

0
⌫0 � 0�0⌫1 + 8�⇤0⌫

⇤
1
+ 0�1⌫

⇤
0
� 8�⇤

1
⌫0 � l⇤�1⌫1 � 08l�⇤1⌫

⇤
1
,

)2 = �0⌫
⇤
0
+ 08�⇤

0
⌫0 + 0�0⌫1 � 8�⇤0⌫

⇤
1
� 0�1⌫

⇤
0
+ 8�⇤

1
⌫0 � l⇤�1⌫1 � 08l�⇤1⌫

⇤
1
,

)3 = �0⌫
⇤
0
� 08�⇤

0
⌫0 � 0�0⌫1 � 8�⇤0⌫

⇤
1
+ 0�1⌫

⇤
0
+ 8�⇤

1
⌫0 � l⇤�1⌫1 + 08l�⇤1⌫

⇤
1
,

)4 = �0⌫
⇤
0
� 08�⇤

0
⌫0 + 0�0⌫1 + 8�⇤0⌫

⇤
1
� 0�1⌫

⇤
0
� 8�⇤

1
⌫0 � l⇤�1⌫1 + 08l�⇤1⌫

⇤
1
,

)5 = �0⌫
⇤
0
+ 1�⇤

0
⌫0 � 1�0⌫1 � �⇤0⌫

⇤
1
� 1�1⌫

⇤
0
� �⇤

1
⌫0 + l⇤�1⌫1 + 1l�⇤1⌫

⇤
1
,

)6 = 6� � �0⌫
⇤
0
� �⇤

0
⌫0 � �0⌫1 � �⇤0⌫

⇤
1
� �1⌫

⇤
0
� �⇤

1
⌫0 � l⇤�1⌫1 � l�⇤1⌫

⇤
1
,

278



and

_1 =
5

86
, _2 =

14 +
p

21

4 · 86
, _3 =

14 �
p

21

4 · 86
, _4 =

7

86
,

0 =
2l + 3l

⇤
p

7

, 1 =
3l + 8l

⇤

7
,l = l3.

This SOS decomposition tells us that B3 � 6� in positive semidefinite order. So from Theorem

3.3.1, it holds that a⇤(G3)  5/6. Combined with Theorem 3.4.9, we have a⇤(G3) = 5/6.

This SOS is obtained from the dual semidefinite program associated with the second level of

the NPA hierarchy. Surprisingly, the first level of NPA is not enough to obtain this upper bound, as

was the case with CHSH.

3.7.2 Algebraic relations

As in Section 3.6, we derive group and ring relations for optimal strategies of G3 from the

SOS (3.7.1). For the rest of this section, let (�0, �1, ⌫0, ⌫1, |ki) be an optimal strategy. Then

hk | (6� � B3) |ki = 0. So it also holds that (8 |ki = 0 and )9 |ki = 0 for all 8 2 [2] and 9 2 [6].

Therefore

()1 + )2 + )3 + )4) |ki = 0, ()1 + )2 � )3 � )4) |ki = 0,

()1 � )2 + )3 � )4) |ki = 0, ()1 � )2 � )3 + )4) |ki = 0.
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From which by simplification we obtain the four relations

�0⌫
⇤
0
|ki = l⇤�1⌫1 |ki, �

⇤
0
⌫0 |ki = l�⇤1⌫

⇤
1
|ki,

�0⌫1 |ki = �1⌫
⇤
0
|ki, �

⇤
0
⌫
⇤
1
|ki = �⇤

1
⌫0 |ki. (3.7.2)

Now from these four relations and the fact that �8, ⌫9 are generalized observables satisfying

[�8, ⌫9 ] = 0, we obtain

l
⇤
�
⇤
0
�1 |ki = ⌫⇤1⌫

⇤
0
|ki (3.7.3)

l�0�
⇤
1
|ki = ⌫1⌫0 |ki (3.7.4)

�
⇤
0
�1 |ki = ⌫0⌫1 |ki (3.7.5)

�0�
⇤
1
|ki = ⌫⇤

0
⌫
⇤
1
|ki (3.7.6)

�
⇤
1
�0 |ki = l⇤⌫0⌫1 |ki (3.7.7)

�1�
⇤
0
|ki = l⌫⇤

0
⌫
⇤
1
|ki (3.7.8)

�
⇤
1
�0 |ki = ⌫⇤1⌫

⇤
0
|ki (3.7.9)

�1�
⇤
0
|ki = ⌫1⌫0 |ki. (3.7.10)

From the pair of relations (3.7.3) and (3.7.9) as well as the pair of relations (3.7.4) and (3.7.10),

we obtain the following relations between Alice’s observables acting on the state |ki:

�
⇤
0
�1 |ki = l�⇤1�0 |ki, (3.7.11)

�1�
⇤
0
|ki = l�0�

⇤
1
|ki. (3.7.12)
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Next we prove two propositions regarding � = �3 = l�0�1�0 + l�⇤0�1 + l�1�
⇤
0

defined in

(3.6.2).

Proposition 3.7.1. (� + �⇤) |ki = �2|ki

Proof. We start by writing

(l⌫⇤
0
+ l⇤⌫1 + ⌫0⌫

⇤
1
+ ⌫⇤

1
⌫0) |ki = (l⇤⌫0 + l⌫⇤1) (l

⇤
⌫0 + l⌫⇤1) |ki

= �(l⇤⌫0 + l⌫⇤1) (�0 + l�1) |ki

= �(�0 + l�1) (l⇤⌫0 + l⌫⇤1) |ki

= (�0 + l�1) (�0 + l�1) |ki

= (�⇤
0
+ l⇤�⇤

1
+ l�0�1 + l�1�0) |ki,

where for the second and fourth equality, we used the relation (1 |ki = 0, and for the third equality

we used the fact that Alice and Bob’s operators commute. Now using (2 |ki = 0, we obtain

(⌫0⌫
⇤
1
+ ⌫⇤

1
⌫0) |ki = (2�⇤

0
+ 2l

⇤
�
⇤
1
+ l�0�1 + l�1�0) |ki. (3.7.13)

Similarly we have

(⌫1⌫
⇤
0
+ ⌫⇤

0
⌫1) |ki = (2�0 + 2l�1 + l⇤�⇤0�

⇤
1
+ l⇤�⇤

1
�
⇤
0
) |ki. (3.7.14)

We proceed by simplifying )6 |ki = 0 using relations (3.7.2) to obtain

(3� � �0⌫
⇤
0
� �⇤

0
⌫0 � �0⌫1 � �⇤0⌫

⇤
1
) |ki = 0.
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Let % = �0⌫
⇤
0
+ �⇤

0
⌫0 + �0⌫1 + �⇤0⌫

⇤
1
, and write

0 =
�
3� � �0⌫

⇤
0
� �⇤

0
⌫0 � �0⌫1 � �⇤0⌫

⇤
1

�⇤ �
3� � �0⌫

⇤
0
� �⇤

0
⌫0 � �0⌫1 � �⇤0⌫

⇤
1

�
|ki

=
�
13� � 5% + �⇤

0
(⌫1⌫

⇤
0
+ ⌫⇤

0
⌫1) + �0(⌫0⌫

⇤
1
+ ⌫⇤

1
⌫0) + ⌫⇤0⌫

⇤
1
+ ⌫0⌫1 + ⌫1⌫0 + ⌫⇤1⌫

⇤
0

�
|ki

= (�2� + �⇤
0
(⌫1⌫

⇤
0
+ ⌫⇤

0
⌫1) + �0(⌫0⌫

⇤
1
+ ⌫⇤

1
⌫0) + ⌫⇤0⌫

⇤
1
+ ⌫0⌫1 + ⌫1⌫0 + ⌫⇤1⌫

⇤
0
) |ki, (3.7.15)

where in the last line, we used (3� � %) |ki = 0. Using identities (3.7.13) and (3.7.14)

�
�
⇤
0
(⌫1⌫

⇤
0
+ ⌫⇤

0
⌫1) + �0(⌫0⌫

⇤
1
+ ⌫⇤

1
⌫0)

�
|ki

=
�
4� + l�0�1�0 + l⇤�⇤0�

⇤
1
�
⇤
0
+ 2l�

⇤
0
�1 + l⇤�0�

⇤
1
+ 2l

⇤
�0�

⇤
1
+ l�⇤

0
�1

�
|ki.

Transferring Bob’s operators to Alice using identities (3.7.3-3.7.6)

�
⌫
⇤
0
⌫
⇤
1
+ ⌫0⌫1 + ⌫1⌫0 + ⌫⇤1⌫

⇤
0

�
|ki =

�
�0�

⇤
1
+ �⇤

0
�1 + l�0�

⇤
1
+ l⇤�⇤

0
�1

�
|ki.

Plugging these back in (3.7.15)

0 = (2� + l�0�1�0 + l⇤�⇤0�
⇤
1
�
⇤
0
+ (3l + l⇤ + 1)�⇤

0
�1 + (3l⇤ + l + 1)�0�

⇤
1
) |ki

= (2� + l�0�1�0 + l⇤�⇤0�
⇤
1
�
⇤
0
+ 2l�

⇤
0
�1 + 2l

⇤
�0�

⇤
1
) |ki

= (2� + l�0�1�0 + l⇤�⇤0�
⇤
1
�
⇤
0
+ l�⇤

0
�1 + l⇤�⇤1�0 + l⇤�0�

⇤
1
+ l�1�

⇤
0
) |ki.

= (2� + � + �⇤) |ki,

where in the first line we used 1 + l + l⇤ = 0, and in the second line we used identities (3.7.11)
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and (3.7.12). É

Proposition 3.7.2. (� + �) |ki = (�⇤ + �) |ki = 0.

Proof. First note

hk |�⇤� |ki = hk | (3� + �⇤
0
�
⇤
1
�0�1 + �⇤1�

⇤
0
�1�0 + �⇤1�0�1�

⇤
0
+ �0�

⇤
1
�
⇤
0
�1

+ �⇤
0
�
⇤
1
�
⇤
0
�1�

⇤
0
+ �0�

⇤
1
�0�1�0) |ki. (3.7.16)

Using (3.7.11) and (3.7.12), we have

hk |�0�
⇤
1
�
⇤
0
�1 |ki = lhk |�0�

⇤
1
�
⇤
1
�0 |ki = lhk |�0�1�0 |ki,

hk |�⇤
0
�
⇤
1
�
⇤
0
�1�

⇤
0
|ki = lhk |�⇤

0
�
⇤
1
�
⇤
0
�0�

⇤
1
|ki = lhk |�⇤

0
�1 |ki,

and using (3.7.5) and (3.7.7)

hk |�⇤
0
�
⇤
1
�0�1 |ki = hk |�⇤0�1�1�

⇤
0
�
⇤
0
�1 |ki = lhk |⌫⇤1⌫

⇤
0
�1�

⇤
0
⌫0⌫1 |ki = lhk |�1�

⇤
0
|ki,

and taking conjugate transpose of these three we obtain

hk |�⇤
1
�0�1�

⇤
0
|ki = l⇤hk |�⇤

0
�
⇤
1
�
⇤
0
|ki,

hk |�0�
⇤
1
�0�1�0 |ki = l⇤hk |�⇤1�0 |ki,

hk |�⇤
1
�
⇤
0
�1�0 |ki = l⇤hk |�0�

⇤
1
|ki.
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Plugging these back in (3.7.16), we obtain

k� |kik2 = hk |�⇤� |ki

= hk | (3� + l�0�1�0 + l�⇤0�1 + l�1�
⇤
0
+ l⇤�⇤

0
�
⇤
1
�
⇤
0
+ l⇤�⇤

1
�0 + l⇤�0�

⇤
1
) |ki

= hk | (3� + � + �⇤) |ki

= hk |� |ki

= 1,

where in fourth equality we used Proposition 3.7.1. Similarly k�⇤ |kik = 1. From (� + �⇤) |ki =

�2|ki and the fact that � |ki and �⇤ |ki are unit vectors, we get that � |ki = �⇤ |ki = �|ki. É

Proposition 3.7.3. �0�1�0 |ki = l�⇤0�
⇤
1
�
⇤
0
|ki.

Proof. By Proposition 3.7.2, � |ki = �
⇤ |ki, and by identities (3.7.11), (3.7.12), (l�⇤

0
�1 +

l�1�
⇤
0
) |ki = (l⇤�⇤

1
�0+l⇤�0�

⇤
1
) |ki. Putting these together, we obtain �0�1�0 |ki = l�⇤0�

⇤
1
�
⇤
0
|ki.

É

Proposition 3.7.4. �0�
⇤
1
�
⇤
0
�1 |ki = �

⇤
0
�1�0�

⇤
1
|ki in other words �0�

⇤
1

and �⇤
0
�1 commute on

|ki
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Proof. To see this write

�0�
⇤
1
�
⇤
0
�1 |ki = l�0�

⇤
1
�
⇤
1
�0 |ki

= l�0�1�0 |ki

= l⇤�⇤
0
�
⇤
1
�
⇤
0
|ki

= l⇤�⇤
0
�1�1�

⇤
0
|ki

= �⇤
0
�1�0�

⇤
1
|ki,

where in the first line we used 3.7.11, in the third line we used 3.7.3, and in the fifth line we used

3.7.12.

É

3.7.3 Rigidity of G3

Suppose ({�0, �1}, {⌫0, ⌫1}, |ki) is an optimal strategy for G3. By Theorem 3.5.7, we know

that the optimal operators of Alice defined in section 3.4.1 generate the group

⌧3 =
⌦
�, %0, %1 : �

3
, %

3

0
, %

3

1
, [�, %0], [�, %1], � (%0%

�1

1
)2
↵
,

The same group is generated by Bob’s operators as in Remark 3.5.8. We apply Corollary 3.2.5

with ⌧� = ⌧⌫ = ⌧3. In order to do this, we first prove the following lemma stating that every

optimal strategy is a |ki-representation of ⌧.

Lemma 3.7.5. Let ({�0, �1}, {⌫0, ⌫1}, |ki) be an optimal strategy for G3. Define maps 5�, 5⌫ :
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⌧3 ! U3 (C) by

5� (�) = l3�, 5� (%0) = �0, 5� (%0%
�1

1
) = �0�

⇤
1
, 5� (%�1

0
%1) = �⇤0�1

5⌫ (�) = l3�, 5⌫ (%0) = ⌫⇤0, 5⌫ (%0%
�1

1
) = ⌫⇤

0
⌫
⇤
1
, 5⌫ (%�1

0
%1) = ⌫0⌫1

and extend it to all of⌧3 using the normal form from Lemma 3.5.3. Then 5�, 5⌫ are |ki-representations

of ⌧3.

Proof. These maps are well defined since every element of ⌧3 can be written uniquly as

�
8

%
9

0

�
%0%

�1

1

�
@1
�
%
�1

0
%1

�
@2

for 8, 9 2 [3], @1, @2 2 [2]. All we need is that 5� (6) 5� (60) |ki = 5� (660) |ki for all 6, 60 2 ⌧3.

The proof is reminiscent of the proof that 660 can be written in normal form for every 6, 60 2 ⌧3.

Except that we need to be more careful here, since we are dealing with Alice’s operators �0, �1,

and not the abstract group elements %0, %1. Therefore we can only use the state-dependent relations

derived in the previous section. We must show that

5� (�8% 90 (%0%
�1

1
)@1 (%�1

0
%1)@2) 5� (�8

0
%
9
0

0
(%0%

�1

1
)@01 (%�1

0
%1)@

0
2) |ki

= 5� (�8% 90 (%0%
�1

1
)@1 (%�1

0
%1)@2

�
8
0
%
9
0

0
(%0%

�1

1
)@01 (%�1

0
%1)@

0
2) |ki (3.7.17)

for all 8, 9 , 80, 9 0 2 [3] and @1, @2, @
0
1
, @
0
2
2 [2].

Claim 2. Without loss of generality, we can assume 8 = 9 = 80 = @0
1
= @0

2
= 0.

Proof. Fix 8, 9 , @1, @2, 8
0
, 9
0
, @
0
1
, @
0
2
. We first show that without loss of generality we can assume
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@
0
1
= @0

2
= 0. By Lemma 3.5.3, there exist 800, 9 00 2 [3], @00

1
, @
00
2
2 [2] such that

�
�
8

%
9

0
(%0%

�1

1
)@1 (%�1

0
%1)@2

� �
�
8
0
%
9
0

0

�
= �8

00
%
9
00

0
(%0%

�1

1
)@001 (%�1

0
%1)@

00
2 .

So it also holds that

�
�
8

%
9

0
(%0%

�1

1
)@1 (%�1

0
%1)@2

� �
�
8
0
%
9
0

0
(%0%

�1

1
)@01 (%�1

0
%1)@

0
2

�
= �8

00
%
9
00

0
(%0%

�1

1
)@001 +@01 (%�1

0
%1)@

00
2
+@0

2

since by Lemma 3.5.2, %0%
�1

1
and %�1

0
%1 commute. So the right-hand-side of (3.7.17) can be

written

5� (�8% 90 (%0%
�1

1
)@1 (%�1

0
%1)@2

�
8
0
%
9
0

0
(%0%

�1

1
)@01 (%�1

0
%1)@

0
2) |ki

= 5� (�8
00
%
9
00

0
(%0%

�1

1
)@001 +@01 (%�1

0
%1)@

00
2
+@0

2) |ki

= l8
00
�
9
00

0
(�0�

�1

1
)@001 +@01 (��1

0
�1)@

00
2
+@0

2 |ki

= (⌫0⌫1)@
0
2 (⌫⇤

0
⌫
⇤
1
)@01l800�9

00

0
(�0�

�1

1
)@001 (��1

0
�1)@

00
2 |ki

= (⌫0⌫1)@
0
2 (⌫⇤

0
⌫
⇤
1
)@01 5� (�8

00
%
9
00

0
(%0%

�1

1
)@001 (%�1

0
%1)@

00
2 ) |ki

= (⌫0⌫1)@
0
2 (⌫⇤

0
⌫
⇤
1
)@01 5� ((�8% 90 (%0%

�1

1
)@1 (%�1

0
%1)@2) (�80%9

0

0
)) |ki,

where in the fourth equality, we used (3.7.5) and (3.7.6) and the fact that Alice and Bob’s operators

commute.
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Also since Alice and Bob’s operators commute

5� (�8
0
%
9
0

0
(%0%

�1

1
)@01 (%�1

0
%1)@

0
2) |ki = l80�9

0

0
(�0�

⇤
1
)@01 (�⇤

0
�1)@

0
2 |ki

= (⌫0⌫1)@
0
2l

8
0
�
9
0

0
(�0�

⇤
1
)@01 |ki

= (⌫0⌫1)@
0
2 (⌫⇤

0
⌫
⇤
1
)@01l80�9

0

0
|ki

= (⌫0⌫1)@
0
2 (⌫⇤

0
⌫
⇤
1
)@01 5� (�8

0
%
9
0

0
) |ki.

Therefore the left-hand-side of (3.7.17) can be written as

5� (�8% 90 (%0%
�1

1
)@1 (%�1

0
%1)@2) 5� (�8

0
%
9
0

0
(%0%

�1

1
)@01 (%�1

0
%1)@

0
2) |ki

= (⌫0⌫1)@
0
2 (⌫⇤

0
⌫
⇤
1
)@01 5� (�8% 90 (%0%

�1

1
)@1 (%�1

0
%1)@2) 5� (�8

0
%
9
0

0
) |ki

Since ⌫0, ⌫1 are unitaries, (3.7.17) is equivalent to the following identity

5� (�8% 90 (%0%
�1

1
)@1 (%�1

0
%1)@2) 5� (�8

0
%
9
0

0
) |ki = 5� ((�8% 90 (%0%

�1

1
)@1 (%�1

0
%1)@2) (�80%9

0

0
)) |ki,

in other words we can assume without loss of generality @0
1
= @

0
2
= 0. The case of 8 = 9 = 0 is

handled similarly. Also since � and 5 (�) are both central, we can assume 80 = 0. É

By this claim, we just need to verify

5� ((%0%
�1

1
)@1 (%�1

0
%1)@2) 5� (%9

0

0
) |ki = 5� ((%0%

�1

1
)@1 (%�1

0
%1)@2

%
9
0

0
) |ki (3.7.18)

There are 12 cases to consider: @1, @2 2 [2], 9 0 2 [3]. The case of 9 0 = 0 is trivial, and the case of
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9
0 = 2 is handled similar to the case of 9 0 = 1. So we only consider the case of 9 0 = 1. The case of

@1 = @2 = 0 is trivial. We analyse the remaining three cases one-by-one:

• @1 = 0, @2 = 1: First note that

(%�1

0
%1)%0 = %0%0%

�1

1
%
�1

1
%0 = �2

%0(%0%
�1

1
) (%�1

0
%1),

which allows us to write

5� ((%�1

0
%1)) 5� (%0) |ki = �⇤0�1�0 |ki

= �⇤
0
�
⇤
1
�
⇤
1
�0 |ki

= l⇤�⇤
0
�
⇤
1
�
⇤
0
�1 |ki

= l⇤�0(�0�
⇤
1
) (�⇤

0
�1) |ki

= 5� (�2
%0(%0%

�1

1
) (%�1

0
%1)) |ki

= 5� ((%�1

0
%1)%0) |ki,

where in the third line we used (3.7.11).

• @1 = 1, @2 = 0:

(%0%
�1

1
)%0 = �2

%0(%�1

0
%1)
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which allows us to write

5� (%0%
�1

1
) 5� (%0) |ki = (�0�

⇤
1
)�0 |ki

= �0(�⇤1�0) |ki

= l⇤�0(�⇤0�1) |ki

= 5� (�2
%0(%�1

0
%1)) |ki

= 5� ((%0%
�1

1
)%0) |ki,

where in the third line we used (3.7.11).

• @1 = @2 = 1:

(%0%
�1

1
) (%�1

0
%1)%0 = � (%0%

�1

1
) (%�1

1
%0)%0 = �%0(%1%

�1

0
) = �2

%0(%0%
�1

1
).

Now write

5� ((%0%
�1

1
) (%�1

0
%1)) 5� (%0) |ki = �0�

⇤
1
�
⇤
0
�1�0 |ki

= �0�
⇤
1
�0�0�1�0 |ki

= l�0�
⇤
1
�0�

⇤
0
�
⇤
1
�
⇤
0
|ki

= l�0(�1�
⇤
0
) |ki

= l⇤�0(�0�
⇤
1
) |ki

= 5� (�2
%0(%0%

�1

1
)) |ki

= 5� ((%0%
�1

1
) (%�1

0
%1)%0) |ki,
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where in the third line we used Proposition 3.7.3 and in the second last line we used (3.7.12).

The proof that 5⌫ is a |ki-representation follows similarly. É

Theorem 3.7.6. G3 is rigid.

Proof. The representation theory of ⌧3 is simple. There are nine irreducible representation of

dimension one: These are given by %0 7! l
8
, %1 7! l

9
, � 7! l

2( 9�8) for 8, 9 2 [3]. It also has

three irreducible representations 61, 62, 63 of dimension three defined by

61(%0) =

©≠≠≠≠≠≠≠
´

0 0 1

1 0 0

0 1 0

™ÆÆÆÆÆÆÆ
¨

, 61(%1) =

©≠≠≠≠≠≠≠
´

0 0 l
⇤

�l⇤ 0 0

0 �l⇤ 0

™ÆÆÆÆÆÆÆ
¨

, 61(�) =

©≠≠≠≠≠≠≠
´

l 0 0

0 l 0

0 0 l

™ÆÆÆÆÆÆÆ
¨

,

62(%0) =

©≠≠≠≠≠≠≠
´

0 0 1

1 0 0

0 1 0

™ÆÆÆÆÆÆÆ
¨

, 62(%1) =

©≠≠≠≠≠≠≠
´

0 0 �1

�1 0 0

0 1 0

™ÆÆÆÆÆÆÆ
¨

, 62(�) =

©≠≠≠≠≠≠≠
´

1 0 0

0 1 0

0 0 1

™ÆÆÆÆÆÆÆ
¨

,

63(%0) =

©≠≠≠≠≠≠≠
´

0 1 0

0 0 1

1 0 0

™ÆÆÆÆÆÆÆ
¨

, 63(%1) =

©≠≠≠≠≠≠≠
´

0 l 0

0 0 �l

�l 0 0

™ÆÆÆÆÆÆÆ
¨

, 63(�) =

©≠≠≠≠≠≠≠
´

l
⇤

0 0

0 l
⇤

0

0 0 l
⇤

™ÆÆÆÆÆÆÆ
¨

.

Among these 61, is the only representation that gives rise to an optimal strategy. This follows

from a simple enumeration of these 12 irreducible representations. However we could also im-

mediately see this, since 61 is the only irreducible representation that satisfies the ring relation

�3 + � = 0.
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Define a unitarily equivalent irreducible representation 60
1
= *61*

⇤ where * =

©≠≠≠≠≠≠≠
´

0 1 0

1 0 0

0 0 1

™ÆÆÆÆÆÆÆ
¨

.

Now e
�0 = 61(%0), e�1 = 61(%1), e⌫0 = 6

0
1
(%0)⇤, e⌫1 := 6

0
1
(%1) is the same strategy defined in

example 3.4.2.

In addition

|k3i =
1
p

10

⇣
(1 � I4) |00i + 2|12i + (1 + I2) |21i

⌘

is the unique state that maximizes a(G3,S61,6
0
1
,|ki). This follows since |k3i is the unique eigenvec-

tor associated with the largest eigenvalue of B3(e�0,
e
�1,

e⌫0,
e⌫1). The rigidity of G3 follows from

Corollary 3.2.5.

É

Remark 3.7.7. The game G3 is in fact a robust self-test. We omit the proof, but at a high-level, if a

strategy ({�0, �1}, {⌫0, ⌫1}, |ki) is Y-optimal for G3, then

hk | (6� � B3) |ki  $ (Y).

Consequently, k(8 |kik  $ (
p
Y), k)9 |kik  $ (

p
Y) for all 8 2 [2], 9 2 [6]. From which one

obtains a robust version of every relation in this section.

3.8 SOS approach to solution group

In this section we show that the connection between an LCS game over Z2 and its solution

group shown in [99] can be determined using sum of squares techniques.
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We will suppress the tensor product notation and simply represent a strategy for an LCS game

G�,1 by a state |ki 2 H and a collection of commuting measurement systems {⇢8,G} and {�9 ,H}.

Using the notation outlined in section 3.2.3 we define the following sets of observables

• Alice’s Observables: �(8)
9

=
Õ
G:G 9=1 ⇢8,G �

Õ
G:G 9=�1 ⇢8,G , for each 8 2 [A] and 9 2 +8

• Bob’s Observables: ⌫9 = �9 ,1 � �9 ,�1 for each 9 2 [B].

Note �(8)
9

commutes with �(8)
9
0 for all 8 2 [A] and 9 , 9

0 2 +8 and ⌫9 commutes with �(8)
9

for all 8, 9 .

These observables will satisfy the following identities:

’
G:G2(8

⇢8,G =
1

2

 
� + (�1)18

÷
:2+8

�
(8)
:

!
(3.8.1)

’
G:H=G 9

⇢8,G =
1

2

⇣
� + H�(8)

9

⌘
(3.8.2)

The probability of Alice and Bob winning the game is given by evaluating hk |E |ki where

E =
’
82[A]
92+8

1

A |+8 |

©≠≠≠≠≠
´

’
G,H:

G2(8
H=G 9

⇢8,G�9 ,H

™ÆÆÆÆÆ
¨

=
’
8, 9

1

2A |+8 |

©≠≠≠≠≠
´
1 �

’
G,H:

G2(8
H=G 9

⇢8,G�9 ,H

™ÆÆÆÆÆ
¨

2

.

Observe using identities 3.8.1 and 3.8.2 we have
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©≠≠≠≠≠
´
1 �

’
G,H:

G2(8
H=G 9

⇢8,G�9 ,H

™ÆÆÆÆÆ
¨
= � �

’
H

�9 ,H

’
G:

G2(8
H=G 9

⇢8,G

= � � 1

4

’
H

�9 ,H

 
(� + H�(8)

9
) (� + (�1)18

÷
:2E8

�
(8)
:
)
!

= � � 1

4

’
H

�9 ,H

 
� + H�(8)

9
+ (�1)18

÷
:2E8

�
(8)
:

+ H(�1)18
÷
:2E8

�
(8)
:
�
(8)
9

!

= � � 1

4
�9 ,1

 
� + �(8)

9
+ (�1)18

÷
:2E8

�
(8)
:

+ (�1)18
÷
:2E8

�
(8)
:
�
(8)
9

!

� 1

4
�9 ,�1

 
� � �(8)

9
+ (�1)18

÷
:2E8

�
(8)
:

+ �(�1)18
÷
:2E8

�
(8)
:
�
(8)
9

!

= � � 1

4
� � 1

4
⌫9 �

(8)
9
� 1

4
(�1)18

÷
:2E8

�
(8)
:
� 1

4
⌫9 (�1)18

÷
:2E8

�
(8)
:
�
(8)
9

=
1

8

 
(� � ⌫9 �(8)

9
)2 + (� � (�1)18

÷
:2E8

�
(8)
:
)2 + (� � (�1)18

÷
:2E8

�
(8)
:
�
(8)
9
⌫ 9 )2

!
.

Thus Alice and Bob are using a perfect strategy if and only if

0 = (� � ⌫9 �(8)
9
) |ki = (� � (�1)18

÷
:2E8

�
(8)
:
) |ki = (� � (�1)18

÷
:2E8

�
(8)
:
�
(8)
9
⌫ 9 ) |ki.

The above equalities will hold exactly when the following two identities hold for all 8 and 9 2 +8,

⌫9 |ki = �(8)
9
|ki (3.8.3)

|ki = (�1)18
÷
:2E8

�
(8)
:
|ki (3.8.4)

Using identities 3.8.3 and 3.8.4 it is possible to define a |ki-representation for the solution group
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⌧�,1.

3.9 A non-rigid pseudo-telepathic LCS game

The canonical example of a pseudo-telepathic LCS games is the Mermin-Peres magic square

game [89] defined in the following figure.

41 — 42 — 43

| | | |

44 — 45 — 46

| | | |

47 — 48 — 49

Figure 3.3: This describes the Mermin-Peres magic square game. Each single-line indicates that the vari-
ables along the line multiply to 1, and the double-line indicates that the variables along the line multiply to
�1.

It is well-known that the Mermin-Peres magic square game has the following operator solution

for which the corresponding quantum strategy is rigid [113].

�1 = � ⌦ f/ , �2 = f/ ⌦ �, �3 = f/ ⌦ f/

�4 = f- ⌦ �, �5 = � ⌦ f- , �6 = f- ⌦ f-

�7 = f- ⌦ f/ , �8 = f/ ⌦ f- , �9 = f. ⌦ f. ,

In this section, we provide an example of a non-local game whose perfect solutions must obey

particular group relations but is not a self-test. This game, glued magic square, is described in
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Figure 3.4.

41 — 42 — 43

| | | |

44 — 45 — 46

| | | |

47 — 48 — 49

| |

410 — 411 — 412

| | | |

413 — 414 — 415

| | | |

416 — 417 — 418

Figure 3.4: This describes a LCS game with 18 variables 41, 42, . . . , 418. Each single-line indicates that the
variables along the line multiply to 1, and the double-line indicates that the variables along the line multiply
to �1.

In order to show that this game is not a self-test, we first define two operator solutions, that

give rise to perfect strategies. Let E = {⇢1, ⇢2, . . . , ⇢18} be defined as

⇢8 =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

©≠≠≠≠≠
´

�4 0

0 �8

™ÆÆÆÆÆ
¨

for 8 = 1, 2, . . . , 9

©≠≠≠≠≠
´

�8�9 0

0 �4

™ÆÆÆÆÆ
¨

for 8 = 10, 11, . . . , 18
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and F = {�1, �2, . . . , �18} as

�8 =

8>>>>>><
>>>>>>:

�8 for 8 = 1, 2 . . . , 9

�4 for 8 = 10, 11 . . . , 18

These two operators solutions E and F give rise to two quantum strategies with the entangled

states |k1i = 1p
8

Õ
7

8=0
|8i |8i and |k2i = 1

2

Õ
3

8=0
|8i |8i.

Theorem 3.9.1. The glued magic square game is not a self-test for any quantum strategy.

Proof. Suppose, for the sake of contradiction, there is a quantum strategy
�
{�8}8, {⌫9 } 9 |ki

�
that

is rigid. Then there exist local isometries*�,*⌫ and +�, +⌫ such that

(*�⇢1 ⌦ *⌫) |k1i = ((�1 ⌦ �) |ki) |junk
1
i (3.9.1)

(*�⇢5 ⌦ *⌫) |k1i = ((�5 ⌦ �) |ki) |junk
1
i (3.9.2)

(+��1 ⌦ +⌫) |k2i = ((�1 ⌦ �) |ki) |junk
2
i (3.9.3)

(+��5 ⌦ +⌫) |k2i = ((�5 ⌦ �) |ki) |junk
2
i. (3.9.4)

From relation (3.9.2), we obtain

hk1 | (⇢5*
⇤
�
⌦ *⇤

⌫
) = hjunk

1
| (hk | (�⇤

5
⌦ �)),

and hence together with relation (3.9.1), we obtain the following relation between ⇢5⇢1 and �⇤
5
�1

hk1 | (⇢5⇢1 ⌦ �) |k1i = hk | (�⇤5�1 ⌦ �) |ki.
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Similarly, we also obtain

hk2 | (�5�1 ⌦ �) |k2i = hk | (�⇤5�1 ⌦ �) |ki,

and hence

hk1 | (⇢5⇢1 ⌦ �) |k1i = hk2 | (�5�1 ⌦ �) |k2i.

By first applying the adjoint to relation (3.9.1) and (3.9.3), we obtain

hk1 | (⇢1⇢5 ⌦ �) |k1i = hk2 | (�1�5 ⌦ �) |k2i.

Now, since �1 and �5 anti-commute, we get the following relation between ⇢5⇢1 and ⇢1⇢5

hk1 | (⇢5⇢1 ⌦ �) |k1i = �hk1 | (⇢1⇢5 ⌦ �) |k1i.

However, a direct computation of hk1 | (⇢5⇢1 ⌦ �) |k1i shows that

hk1 | (⇢5⇢1 ⌦ �) |k1i =
1

8

7’
8=0

h8 |⇢5⇢1 |8i =
1

8
TR(⇢5⇢1) =

1

8
TR(⇢1⇢5) = hk1 | (⇢1⇢5 ⌦ �) |k1i,

and TR(⇢1⇢5) = TR(�4) + TR(� ⌦ f/f-) = 4 < 0. Hence, the glued magic square game is not

rigid. É

Although this game is not a self-test, we know from Section 3.8 Alice’s operators must provide

a |ki-representation for the solution group of glued magic square, and thus must satisfy particular

group relations.
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Chapter 4: On Synchronous Strategies

This chapter is taken verbatim from our paper “Synchronous Values of Games” [32]. All

authors of this work contributed equally.

4.1 Introduction

Nonlocal games have been the central object of study in many areas of computer science and

quantum information [6, 4, 114, 3, 2]. They play a central role in our understanding of entan-

glement. Such games were vital to the recent resolution of the Connes’ Embedding Problem [14]

and to answering the Tsirelson Problems [38, 14] about the relationships between the different

mathematical models for entanglement.

The value of a nonlocal game is the supremum of the probability of winning the game over

all allowed strategies. The value of a game can vary depending on the types of strategies or prob-

ability densities that are allowed, and there has been considerable interest in how the value of a

game can change when one is allowed to use quantum assisted strategies versus classically defined

distributions [20, 115, 85, 116, 117, 118]. In addition, the proofs of the separation of the various

mathematical models for entanglement involved finding games whose quantum assisted values de-

pended on the particular mathematical model used to describe entanglement. Thus, separating the

values of games for the various models has been the most successful tool in showing that these

various models of quantum densities are different [14, 13, 38, 119, 120, 121, 122].

299



In this paper we are interested in how values of games behave when one puts on the restriction

that the probability densities derived from the various models must also be synchronous, a term

we define later. There are several reasons for this interest. First, it has been shown that the study

of synchronous densities is related to the study of traces on C*-algebras [58, 60]. For this reason,

finding synchronous values of games turns into problems about optimizing the trace of an element

of a C*-algebra over certain types of traces on the C*-algebra, which lends a totally different

flavour to the theory of values of games.

Second, the Connes’ Embedding Problem in its original form is a question about the behaviour

of traces. So studying synchronous values of games provides a much more direct link between this

problem and games.

Finally, there is a family of games known as synchronous games that has been very useful

in delineating the separations between the different models for quantum densities. In fact, the

separations between the different models for entanglement have all been shown using synchronous

games. For synchronous games, it is very natural to restrict the allowed strategies to also be

synchronous.

Thus, hopefully, the study of synchronous values of synchronous games could lead to a clearer

understanding of the negative resolution of the Connes’ Embedding Problem.

In section 2, we delineate these ideas and definitions more clearly.

In section 3, we turn our attention to the graph colouring game. In this game the players are

given 2 colours with 2 smaller than the chromatic number of the graph. The value of this game

is in some sense a measure of how nearly they can convince someone that they have successfully

coloured the graph with only 2-colours. Remarkably the quantum assisted value can be much

higher than the classical value of these games.
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We show that for a particular density on inputs, the synchronous local value of this game is

a function of the max c-cut of the graph, while the ordinary local value is related to the max cut

problem for a bipartite extension of the graph. This leads us to introduce a quantum version of

max cut that is motivated by the quantum assisted synchronous value of the 2-colouring game

and we prove that this value is given by an SDP. There are many SDP relaxations of max cut,

and our results show that one of these relaxations corresponds to the synchronous value of this

game. For an introduction to this literature see [123]. We give a formula for the quantum assisted

synchronous value of the 2-colouring game of a graph with any density on inputs in terms of an

SDP and compute this value for some graphs.

In section 4, we turn our attention to a family of games that has been studied extensively in the

literature, called XOR games. For XOR games, their ordinary value and their synchronous value

are shown to be optimization problems over two different spectrahedra.

In section 5, we return to the graph colouring game and study the problem of 2-colouring an

odd cycle. Even though this game is synchronous, we show that often there are non-synchronous

strategies that out perform any synchronous strategy. In fact, we show that as one varies the prior

distributions on pairs of vertices, which are the inputs of this game, then there are various regimes

where the synchronous values are smaller than the non-synchronous values and other regimes

where they are the same.

In section 6, we turn our attention to parallel repetition of games. A famous result in game

theory says that unless the classical value of a game is 1, then the value of playing = parallel

copies of the game tends to 0 as = grows. In contrast, we give an example of a game whose

synchronous value is strictly increasing under parallel repetition. The bias of the XOR of two

XOR games is known to be multiplicative. We show that in contrast the synchronous bias need not
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be multiplicative.

Finally, each synchronous strategy for a game corresponds to a certain arrangement of projec-

tions in a tracial C*-algebra. In section 7, we derive conditions that are necessarily met by any

arrangement of projections that yield a correlation that attains the synchronous value of the game.

For the CHSH game we show that these relations force all of the projections to commute, and that,

consequently, for the CHSH game the quantum-assisted synchronous value is equal to the classical

value of the game. More generally, we give conditions which must hold whenever the max value

of a game occurs with a finite dimensional synchronous strategy.

4.2 Values of Games

The types of games that we shall be interested in are two player nonlocal games. These are

cooperative games in which two players referred to as Alice and Bob cooperate to give correct

pairs of answers to pairs of questions posed by a third party often called the Referee or Verifier. The

nonlocality condition is that once the game starts the players cannot communicate with one another.

In particular, Alice does not know what question Bob has received and vice versa. Whether the

pair of answers returned by the players is satisfactory or not depends not just on the individual

answers but on the 4-tuple consisting of the question-answer pairs.

More formally a nonlocal game is described by two input sets ��, �⌫, two output set $�,$⌫, a

function

_ : �� ⇥ �⌫ ⇥$� ⇥$⌫ ! {0, 1},

often called the rules or verification function, and a prior distribution (or distribution for short)
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on input pairs, i.e.,

c : �� ⇥ �⌫ ! [0, 1],

with
Õ
G,H
c(G, H) = 1. Throughout, we let

, := {(G, H, 0, 1) : _(G, H, 0, 1) = 1},

be the set of correct or winning 4-tuples and

# := {(G, H, 0, 1) : _(G, H, 0, 1) = 0},

be the set of incorrect or losing 4-tuples. We sometimes refer to # as the null set. Each round

of the game consists of Alice and Bob receiving an input pair (G, H) with probability c(G, H) and

returning an output pair (0, 1). Thus, a game ⌧ is specified by (��, �⌫,$�,$1, _, c).

Intuitively, if Alice and Bob have some strategy for such a game, then it would yield a condi-

tional probability density1,

?(0, 1 |G, H), G 2 ��, H 2 �⌫, 0 2 $�, 1 2 $⌫,

which gives the conditional probability that Alice and Bob return output pair (0, 1), given that they

received input pair (G, H).

A deterministic strategy corresponds to a pair of functions, 5� : �� ! $� and 5⌫ : �⌫ ! $⌫

such that any time Alice and Bob receive input pair (G, H) they reply with output pair (0, 1) =

1Some authors refer to conditional probability densities as correlations.
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( 5� (G), 5⌫ (H)). In this case ?(0, 1 |G, H) is always 0 or 1.

We often use density to refer to conditional probability density. We generally identify strategies

with the conditional densities that they produce. Since 0  ?(0, 1 |G, H)  1, 80, 1, G, H, it is natural

to identify densities with points in the <-cube, [0, 1]< where < = =�=⌫:�:⌫ is the product of the

cardinalities, =� = |�� |, =⌫ = |$⌫ |, :� = |$� |, :⌫ = |$⌫ |.

A strategy ? is called non-signaling if

• for every 0 2 $�, G 2 �� and H, H0 2 �⌫ we have

’
1

?(0, 1 |G, H) =
’
1

?(0, 1 |G, H0),

• for every 1 2 $⌫, H 2 �⌫ and G, G0 2 �� we have

’
0

?(0, 1 |G, H) =
’
0

?(0, 1 |G0, H).

Intuitively, this is a restatement of the nonlocality condition that states that Alice’s answer is not

dependent on Bob’s question and vice versa. Every strategy in this paper is non-signalling. For

a density ?(0, 1 |G, H) we denote Alice’s marginal density by ?�. This is defined to be ?� (0 |G) =
Õ
1
?� (0, 1 |G, H) where H is any question for Bob (the choice of H does not matter because ? is

non-signalling). One can similarly define Bob’s marginal density ?⌫.

In a two-player nonlocal game, the probability of winning, i.e., the expected value of a given
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strategy ?(0, 1 |G, H) is given by

l(⌧, c, ?) =
’
G,H,0,1

c(G, H)_(G, H, 0, 1)?(0, 1 |G, H)

=
’

(G,H,0,1)2,
c(G, H)?(0, 1 |G, H).

Given a set ( of conditional probability densities the (-value of the pair (⌧, c) is

l( (⌧, c) := sup{l(⌧, c, ?) : ? 2 (}.

Identifying ( ✓ [0, 1]<, since the value is clearly a convex function of ?, the value will always be

attained at one of the extreme points of the closed convex hull of (.

There are many sets of conditional probability densities for which researchers attempt to com-

pute the (-value. Among these, in particular, are the local, quantum, and quantum commuting

densities, denoted by

⇠;>2 (=�, =⌫, :�, :⌫),⇠@ (=�, =⌫, :�, :⌫), and ⇠@2 (=�, =⌫, :�, :⌫),

respectively. We refer to [59, 60] for the precise definitions of these sets. To simplify notation,

we generally suppress the set sizes. For fixed numbers of inputs and outputs these are convex sets,

with ⇠;>2 and ⇠@2 closed, while ⇠@ is not generally closed. In fact, in [119] it was shown that

⇠@ (=, =, : , :) is not closed for all = � 5, : � 2. The closure of ⇠@ is often denoted by ⇠@0. These

sets satisfy

⇠;>2 ✓ ⇠@ ✓ ⇠@0 ✓ ⇠@2 .
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We remark that ⇠;>2 is a convex polytope whose extreme points are generated by the {0, 1}

densities arising from deterministic strategies.

To simplify notation, we set

lC (⌧, c) = l⇠C (⌧, c), C = ;>2, @, @0, @2.

Note that, since the value is a convex function of the densitiy, we have that

l;>2 (⌧, c) = sup

8>>><
>>>:

’
G,H

(G,H, 5�(G), 5⌫ (H))2,

c(G, H)
9>>>=
>>>;
,

where the supremum is over all pairs of functions 5� : �� ! $�, 5⌫ : �⌫ ! $⌫.

Also, since the value is a continuous function of the density, we have l@ (⌧, c) = l@0 (⌧, c).

An often interesting question for l@ (⌧, c) is whether or not the value is actually attained by an

element of ⇠@. For C = ;>2, @0, @2 the value is always attained, since the corresponding sets of

densities are closed and hence compact.

Computing these values for various games generated a great deal of interest in the operator

algebras community when it was shown by [124] that if Connes’ embedding problem had an affir-

mative answer, then

l@ (⌧, c) = l@2 (⌧, c),

for all games and densities.

Recently, [14] proved the existence of a game for which

l@ (⌧, c) < 1/2 < l@2 (⌧, c) = 1,
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thus refuting Connes’ embedding problem.

4.2.1 Synchronous Games

The games that we shall be interested in have the property that Alice and Bob’s question sets

and answer sets are the same, i.e., �� = �⌫ =: � and $� = $⌫ =: $. So such a game is given as

⌧ = (�,$, _, c). If = = |� | and : = |$ |, then we say that the game has = inputs and : outputs and

write ⇠C (=, :), C = ;>2, @, @2 for the corresponding sets of densities.

For such games it is natural to impose some conditions on _. We call ⌧ synchronous if

_(G, G, 0, 1) = 0, 80 < 1,

i.e., if Alice and Bob are asked the same question they must give the same reply, although their

answer to this question could vary with rounds. The game constructed in [14] that refutes the

embedding problem is synchronous.

We call a game symmetric if

_(G, H, 0, 1) = _(H, G, 1, 0),

so that interchanging Alice and Bob has no effect on the rules.

In addition to imposing these conditions on the rules of a game, it is natural to impose them on

the allowed densities. A density ?(0, 1 |G, H) is called synchronous if

?(0, 1 |G, G) = 0, 80 < 1.
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We let ⇠B
C
(=, :) ✓ ⇠C (=, :), C = ;>2, @, @2 denote the corresponding subsets of synchronous densi-

ties.

Given a game ⌧ = (�,$, _, c), we set

l
B

C
(⌧, c) = l⇠B

C

(⌧, c), C = ;>2, @, @2.

These are the values that we are interested in computing in this paper.

In [58], which introduced the concept of synchronous games and densities, and [60] each of

the sets ⇠B
C
(=, :), C = ;>2, @, @0, @2 were characterized in terms of traces.

Given a C*-algebra A with unit, by a trace on A we mean a linear functional g : A ! C

satisfying g(�) = 1, ? � 0 =) g(?) � 0 and g(GH) = g(HG). The first two conditions

characterize states on A. When A = "<, the set of < ⇥ < matrices, it is known that there is a

unique trace, namely,

CA< ((08, 9 )) =
1

<

’
8

08,8 =
1

<

)A ((08, 9 )).

Given a C*-algebra A with unit �, a k-outcome projection valued measure(k-PVM) is a

set of : projections, ⇢0 = ⇢
2

0
= ⇢

⇤
0

such that
Õ
:�1

0=0
⇢0 = �. A family of = k-PVM’s is a set of

projections {⇢G,0 : 1  G  =, 0  0  : � 1} with
Õ
0
⇢G,0 = �,8G.

The following is a restatement of the results of [58] and [60] characterizing elements of⇠B
C
(=, :)

in terms of traces.

Theorem 4.2.1 ([58, 60]). We have that ? 2 ⇠B
@2
(=, :) if and only if there is a family of = :-

outcome PVM’s {⇢G,0 : 1  G  =, 0  0  : � 1} in a unital C*-algebra A with a trace g such
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that

?(0, 1 |G, H) = g(⇢G,0⇢H,1).

Moreover,

• ? 2 ⇠B
;>2

(=, :) if and only if A can be taken to be abelian,

• ? 2 ⇠B
@
(=, :) if and only if A can be taken to be finite dimensional,

• ? 2 ⇠B
@0
(=, :) if and only if A can be taken to be an ultrapower of the hyperfinite � �1-factor.

Let A be a C*-algebra and g a trace. Let cg : A ! ⌫(�) be the corresponding GNS represen-

tation and ⌘ 2 � the GNS state. We say that g is of type loc if cg (A) is abelian. We say that g is

of type q if cg (A) is finite dimensional. We say that g is of type qa if g is amenable in the sense

of [60, Definition 3.1]. By the preceding theorem, together with [60, Theorem 3.2], whenever

{⇢G,0} are PVM’s in a fixed C*-algebra A and g is a trace on A, then ?(0, 1 |G, H) = g(⇢G,0⇢H,1)

defines a density ? 2 ⇠B
;>2

(=, :) (resp., ⇠B
@
(=, :),⇠B

@0
(=, :)) whenever g is of type C = ;>2 (resp.

C = @, C = @0).

Note that if ?(0, 1 |G, H) is a synchronous density, then

?(0, 1 |G, H) = g(⇢G,0⇢H,1) = g(⇢H,1⇢G,0) = ?(1, 0 |H, G).

In other words every synchronous density is symmetric.

The above result translates into the following result about synchronous values.

Theorem 4.2.2. Let ⌧ = (�,$, _, c) be an n input k output game. Then
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1.

l
B

;>2
(⌧, c) = sup

8>>><
>>>:

’
G,H

(G,H, 5 (G), 5 (H))2,

c(G, H)
9>>>=
>>>;
,

where the supremum is over all functions, 5 : � ! $ from inputs to outputs,

2.

l
B

@
(⌧, c) = lB

@0
(⌧, c) = sup

8>><
>>:

’
(G,H,0,1)2,

c(G, H)CA< (⇢G,0⇢H,1)
9>>=
>>;
,

where the supremum is over all families of = k-PVM’s in "< and over all <,

3.

l
B

@2
(⌧, c) = sup

8>><
>>:

’
(G,H,0,1)2,

c(G, H)g(⇢G,0⇢H,1)
9>>=
>>;
,

where the supremum is over all unital C*-algebras A, traces g, and families of = k-PVM’s

in A.

As we remarked earlier, the second supremum may not be attained.

4.2.2 A Universal C*-algebra Viewpoint

We let F(=, :) denote the group that is the free product of = copies of the cyclic group of order

: . The full C*-algebra of this group ⇠⇤(F(=, :)) is generated by = unitaries DG , 1  G  = each of

order : , i.e., D:
G
= �. Given any unital C*-algebra A with = unitaries *G 2 A, 1  G  = of order

: , there is a *-homomorphism from ⇠
⇤(F(=, :)) mapping DG ! *G . If we decompose each DG in

terms of its spectral projections,

DG =
:�1’
0=0

U
0

4G,0,
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where U = 4
2c8/: , then {4G,0 : 1  G  =, 0  0  : � 1} is a universal family of = k-PVM’s,

in the sense that given any set of = k-PVM’s {⇢G,0} in a unital C*-algebra A, there is a unital

*-homomorphism from ⇠
⇤(F(=, :)) to A sending 4G,0 ! ⇢G,0.

Values of games can be interpreted in terms of properties of the maximal and minimal C*-

tensor product of this algebra with itself.

It follows from the work of [124](see also [125]) that

• ?(0, 1 |G, H) 2 ⇠@ (=, :) = ⇠@0 (=, :) if and only if there exits a state

B : ⇠
⇤(F(=, :)) ⌦<8= ⇠⇤(F(=, :)) ! C

such that

?(0, 1 |G, H) = B(4G,0 ⌦ 4H,1),

• ?(0, 1 |G, H) 2 ⇠@2 (=, :) if and only if there exists a state

B : ⇠
⇤(F(=, :)) ⌦<0G ⇠⇤(F(=, :)) ! C

such that

?(0, 1 |G, H) = B(4G,0 ⌦ 4H,1).

Given a game ⌧ and prior distribution c we set

%⌧,c =
’

(G,H,0,1)2,
c(G, H)4G,0 ⌦ 4H,1 .
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Using the fact that norms of positive elements are attained by taking the supremum over states, we

have:

Proposition 4.2.3. Given an n input, k output game ⌧ = (�,$, _, c),

l@ (⌧, c) = k%⌧,ck⇠⇤ (F(=,:))⌦<8=⇠⇤ (F(=,:)) ,

and

l@2 (⌧, c) = k%⌧,ck⇠⇤ (F(=,:))⌦<0G⇠⇤ (F(=,:)) .

The example of [14] gave the first proof that the minimal and maximal norms are different.

Similar results to Proposition 4.2.3 can be found in Section 4.1 of [126] where the value of a game

is described as the norm of an operator in a tensor product of operator spaces.

We now turn to the synchronous case. The element 4G,04H,1 is not positive, but for any trace we

have that

g(4G,04H,1) = g(4G,04H,14G,0),

and 4G,04H,14G,0 � 0.

We set

'⌧,c =
’

(G,H,0,1)2,
c(G, H)4G,04H,14G,0 .

We also set C ✓ ⇠⇤(F(=, :)) equal to the closed linear span of all commutators, GH � HG.

Given any C*-algebra A we let ) (A) denote the set of traces on A and let )5 8= (A) denote the

set of traces that factor through matrix algebras, i.e., are of the form

g(0) = CA< (c(0)),
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for some < and some unital *-homomorphism c : A ! "<.

Theorem 4.2.4. Let ⌧ = (�,$, _, c) be an n input, k output game. Then

1.

l
B

@2
(⌧, c) = sup{g('⌧,c) : g 2 ) (⇠⇤(F(=, :))}

= inf{k'⌧,c � ⇠k : ⇠ 2 C},

2.

l
B

@
(⌧, c) = sup{g('⌧,c) : g 2 )5 8= (⇠⇤(F(=, :))}.

Two of the equalities are direct applications of the above facts. The equality of the value with

the distance to the space of commutators follows from [127, Theorem 2.9] where it is shown that

for positive elements of a C*-algebra, the supremum over all traces is equal to the distance to the

space C.

For the example of a game constructed in [14], it is known that

l
B

@
(⌧, c) < 1/2 < l

B

@2
(⌧, c) = 1,

and consequently, their results also give the first proof that)5 8= (⇠⇤(F(=, :)) is not dense in) (⇠⇤(F(=, :)).

Perhaps even more remarkable is that this difference is witnessed by the element '⌧,c for some

game, which only involves words in the generators of order three. However, the game of [14] is

mostly given implicitly and estimates on the values of = and : to achieve their example are very
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large.

In summary, we see that the theory of values and synchronous values of these games gives us

interesting information about C*-algebras. Thus, we are led to study these values for interesting

sets of games.

4.3 The Graph Colouring Game

In this section we study the synchronous value of the game we get by trying to colour the

vertices of a graph using 2-colours, especially when 2 is smaller than the least number of colours

needed for an actual colouring. By a graph we mean a pair ⌧ = (+ , ⇢), where + denotes the

vertices and ⇢ ✓ + ⇥ + denotes the edge set. Our graphs are undirected, i.e., (G, H) 2 ⇢ =)

(H, G) 2 ⇢ and loopless, i.e., (G, G) 8 ⇢ . A 2-colouring is any function 5 : + ! {1, ..., 2} such

that (G, H) 2 ⇢ implies that 5 (G) < 5 (H).

Note that since (G, H) 2 ⇢ =) (H, G) 2 ⇢ , and these both represent the same edge, then the

cardinality of the set ⇢ is equal to twice the number of edges.

Before recalling the graph colouring game it helps to recall the graph homomorphism game.

Given two graphs ⌧8 = (+8, ⇢8) a graph homomorphism is a function 5 : +1 ! +2 such that

(G, H) 2 ⇢1 =) ( 5 (G), 5 (H)) 2 ⇢2. If we let  2 denote the complete graph on 2 vertices, then a

2-colouring of ⌧ is just a graph homomorphism from ⌧ to  2.

The graph homomorphism game, �><(⌧1,⌧2) is the synchronous game with inputs � = +1,

outputs $ = +2 and rule _ : +1 ⇥+1 ⇥+2 ⇥+2 ! {0, 1} with null set

# = {(G, H, 0, 1) : (G, H) 2 ⇢1, (0, 1) 8 ⇢2} [ {(G, G, 0, 1) : G 2 +1, 0 < 1}.
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Note that _ is symmetric.

The graph 2-colouring game is the game �><(⌧, 2). We use {1, ..., 2} for the vertex set

of  2. We also usually assume that 2 < j(⌧) (where j(⌧) is the chromatic number of ⌧) since

otherwise

l
B

C
(�><(⌧, 2)) = 1, for C = ;>2, @, @0, @2.

4.3.1 The Relation Between Max c-Cut and the Synchronous Local Value

Given a graph ⌧ = (+ , ⇢) the max c-cut of ⌧, is the maximum number of edges that can be

coloured “correctly" using 2-colours, i.e.,

⇠DC2 (⌧) :=
max{|{(G, H) 2 ⇢ : G 2 (8, H 2 ( 9 , 8 < 9}|}

2
,

where the maximum is over all partitions of + into 2 disjoint subsets, (1, ..., (2 and the absolute

value signs denote cardinality. Equivalently, a partition into 2 disjoint subsets is defined by a

function 5 : + ! {1, ..., 2} with (8 = 5
�1({8}), so that

⇠DC2 (⌧) =
max{|{(G, H) 2 ⇢ : 5 (G) < 5 (H)}|}

2
,

where now the maximum is over all functions. Note that ⌧ has a c-colouring precisely when

|⇢ |
2

= ⇠DC2 (⌧).

The max 2-cut is generally referred to as simply the max cut. Computing the max cut is known

to be NP-hard [128].

The following result shows that from the point of view of max cut problems, the synchronous

315



value of the graph colouring game is more meaningful.

Proposition 4.3.1. Let ⌧ = (+ , ⇢) be a graph on = vertices and let �><(⌧, 2) be the graph

c-colouring game and let c be the uniform density on ⇢ . Then

l
B

;>2
(�><(⌧, 2), c) =

2⇠DC2 (⌧)
|⇢ | .

Proof. Each synchronous deterministic strategy corresponds to a function 5 : + ! {1, ..., 2}.

The number of input pairs for which this strategy will win is equal to 2⇠DC2 (⌧) and the result

follows. É

In contrast, one can see that l;>2 (�><(⌧, 2), c) is related to the max c-cut of a bipartite

graph over ⌧, since Alice and Bob are allowed different functions for their deterministic strategy.

Given a graph ⌧ = (+ , ⇢) we define a new graph ⌧1 = (+1, ⇢1) with +1 = + ⇥ {0, 1} and

((G, 8), (H, 9)) 2 ⇢1 if and only if 8 < 9 and (G, H) 2 ⇢ . This graph is the usual bipartite graph

defined over ⌧.

Proposition 4.3.2. Let ⌧ = (+ , ⇢) be a graph, let ⌧1 = (+1, ⇢1) be the bipartite graph defined

over ⌧ as above, and consider the c-colouring game with c the uniform probability density on ⇢ .

Then

l;>2 (�><(⌧, 2), c) =
⇠DC2 (⌧1)

|⇢ | .

Proof. Each deterministic strategy is given by a pair of functions 5 , 6 : + ! {1, ..., 2}. Such

pairs of functions are in one-to-one correspondence with functions � : +1 ! {1, ..., 2} by setting

5 (G) = � ((G, 0)) and 6(G) = � ((G, 1)).
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The number of times that this strategy will win is equal to

|{(G, H) 2 ⇢ : 5 (G) < 6(H)}| = |{((G, 0), (H, 1)) 2 ⇢1 : � (G, 0) < � (H, 1)}|.

Note that when we chose 5 , 6 to maximize this number, we are obtaining ⇠DC2 (⌧1) the actual

number of edges since we are not counting ordered pairs of the form ((G, 1), (H, 0)), and the result

follows. É

Thus, there is a clean relationship between the synchronous local value of the graph colouring

game and the cut numbers, while the usual local value is related to the cut numbers of the bipartite

graph constructed from the original graph. This relationship makes it natural to define quantum

cut numbers of graphs as follows.

Definition 4.3.3. Given a graph ⌧ = (+ , ⇢), a natural number 2 � 2 and for C 2 {@, @2} we define

the t-quantum max c-cut number of G to be

⇠DCC,2 (⌧) =
|⇢ |
2

· lB
C
(�><(⌧, 2), c),

where c is the uniform density on ⇢ .

Using our characterizations of these synchronous values, we have that for a graph ⌧ = (+ , ⇢)
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on = vertices,

⇠DC@2,2 (⌧) =
1

2
sup

8>><
>>:

’
(G,H)2⇢ ,0<1

g(4G,04H,1) : g 2 ) (⇠⇤(F(=, 2))
9>>=
>>;

=
|⇢ |
2
� 1

2
inf

8>><
>>:

’
(G,H)2⇢

2’
0=1

g(4G,04H,0) : g 2 ) (⇠⇤(F(=, 2))
9>>=
>>;

=
1

2
inf

8>><
>>:
k

’
(G,H)2⇢ ,0<1

44,04H,1 � ⇠k : ⇠ 2 C
9>>=
>>;
,

while

⇠DC@,2 (⌧) =
1

2
sup
<

8>><
>>:

’
(G,H)2⇢ ,0<1

CA< (⇢G,0⇢H,1) : {⇢G,0} an (n,c)-PVM in "<

9>>=
>>;

=
|⇢ |
2
� 1

2
inf
<

8>><
>>:

’
(G,H)2⇢

2’
0=1

CA< (⇢G,0⇢H,0) : {⇢G,0} an (n,c)-PVM in "<

9>>=
>>;
,

where CA< denotes the normalized trace on "<.

In a later section on XOR games we show that ⇠DC@,2(⌧) = ⇠DC@2,2(⌧) and that this value is

given by an SDP. There is a significant body of literature of semidefinite relaxations of max cut,

for an introduction see [123].

4.3.2 The Graph Correlation Function

This function, with a slightly different notation, was introduced and studied in [119] where it

was used to give a proof of the non-closure of ⇠B
@
(=, :) for all = � 5, : � 2. Given any graph

⌧ = (+ , ⇢) and a C*-algebra with a trace (A, g) and a set of projections, %G 2 A, G 2 + , then the
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correlation of these projections is
’

(G,H)2⇢
g(%G%H).

Then for each C 2 {;>2, @, @0, @2} the graph correlation function 5⌧,C (A) is defined as:

5⌧,C (A) = inf

8>><
>>:

’
(G,H)2⇢

g(%G%H) : g(%G) = A,8G 2 +
9>>=
>>;
,

where the infimum is over all sets of projections {%G : G 2 +} in the C*-algebra and all traces of

type t. Note that the C*-algebra is fixed and the optimization is over choices of projections and

traces. So clearly,

0  5⌧,@2 (A)  5⌧,@0 (A) = 5⌧,@ (A)  5⌧,;>2 (A),

and there will exist projections and traces of type t attaining these values except, possibly, in the

case @.

In [119], it was shown that for the complete graph on 5 vertices,  5, the value of the function

5 5,@
(A) is not attained for any irrational value of A in a certain interval, which was then shown to

imply that ⇠@ (5, 2) is not closed.

In [58] it was shown that if we set

A⌧,C = sup{A : 5⌧,C (A) = 0},

then

A
�1

⌧,C
 jC (⌧),

where these quantum chromatic numbers jC (⌧) of type C 2 {;>2, @, @0, @2} is the least value of 2
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for which there exists a perfect strategy of type C for the graph 2-colouring game. In [58] it is also

shown that A�1

⌧,;>2
is equal to the fractional chromatic number of the graph ⌧, while A�1

⌧,@
agrees

with the quantum fractional chromatic number introduced by D. Roberson [35].

In [119] it is shown that if the infimum of the graph correlation function is attained by a set

of projections {%G : G 2 +}, then for each G 2 + , %G commutes with
Õ
H:(G,H)2⇢ %H. In Section 7,

we adapt their technique to obtain relations that must be satisfied by the projections that attain the

synchronous value for other games.

We continue our study of the synchronous values of the 2-colouring game by obtaining esti-

mates in terms of the graph correlation function, which we will show are sharp for the case 2 = 2.

4.3.3 The Uniform Synchronous Density

The uniform distribution for = inputs and 2 outputs is given by ?(0, 1 |G, H) = 1/22, but this

density is not synchronous. We wish to introduce a synchronous analogue.

The uniform synchronous density on = inputs and 2 outputs is given by the formula,

?(0, 1 |G, H) =

8>>>>>>>>>><
>>>>>>>>>>:

1/22
, G < H,

1/2, G = H, 0 = 1,

0, G = H, 0 < 1.

Proposition 4.3.4. The uniform synchronous density on = inputs and 2 outputs is a local density,

i.e., is in ⇠B
;>2

(=, 2).

Proof. Let ( = {(01, ..., 0=) : 0  08  2 � 1, 08 2 Z} and define (G,0 ✓ ( to be the =-tuples that

are equal to 0 in the G-th coordinate. Note that [2�1

0=0
(G,0 = (. Consider the uniform distribution %
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on ( so that each point has probability 1

|( | =
1

2
=
.

On question pair (G, H), Alice and Bob, using classical shared randomness, sample a tuple

(01, ..., 0=) from ( according to %. Alice responds with 0G and Bob responds with 0H. This

classical strategy generates the synchronous local density given by

?(0, 1 |G, H) =
π
(

j(G,0
j(H,1

3% =
|(G,0 \ (H,1 |

2
=

,

where j) denotes the characteristic function of the set) . It is easily checked that this is the uniform

synchronous density. É

Somewhat surprisingly, another representation of the uniform synchronous density is given by

the canonical trace on the free group F(=, 2). Recall that the canonical trace on the algebra of a

group C(⌧) is given by setting g(D4) = 1, where 4 is the group identity, so that D4 is the identity

of C(⌧) and g(D6) = 0,86 < 4, and extending linearly. If *1, ...,*= are the order 2 unitaries that

generate F(=, 2), then the canonical projections are given by

4G,0 =
1

2

2�1’
9=0

U
�0 9
*
9

G
,

where U = 4
2c8/2. Thus, g(4G,0) = 1/2. These projections and the canonical trace yield a syn-

chronous density

?(0, 1 |G, H) = g(4G,04H,1),

which is easily seen to be the uniform synchronous density. It is somewhat remarkable that the

trace arising from this free non-abelian group agrees on the generators, up to order two, with a

trace arising from an abelian setting.
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This density gives us a bound on the graph correlation function.

Proposition 4.3.5. Let ⌧ = (+ , ⇢)be a graph on = vertices. Then

5⌧,;>2 (1/2) 
|⇢ |
2

2
.

Proof. Let ⇢G,0 be the projections yielding the uniform synchronous density, then we have that

5⌧,;>2 (1/2) 
’

(G,H)2⇢
g(⇢G,1⇢H,1) =

|⇢ |
2

2
.

É

Theorem 4.3.6. Let ⌧ = (+ , ⇢) be a graph on = vertices and consider the 2-colouring game

�><(⌧, 2) played with the uniform distribution c on ⇢ . Then for C 2 {;>2, @, @2},

<0G

⇢
1 � 1

2

, 1 � 2

|⇢ | 5⌧,C (1/2)
�
 lB

C
(�><(⌧, 2), c)  1 � 2

|⇢ | 5⌧,C (1/2). (4.3.1)

Proof. First, assume that our density is synchronous so that there exist PVM’s {⇢G,0 : 0  0 

2 � 1} such that ?(0, 1 |G, H) = g(⇢G,0⇢H,1) for some C*-algebra and trace g : A ! C of type t.

Then we have that

2�1’
0=0

’
(G,H)2⇢

?(0, 0 |G, H) =
’

(G,H)2⇢

2�1’
0=0

g(⇢G,0⇢H,0) = 2

’
(G,H)2⇢

g
(2) (%G%H), (4.3.2)

where we set A(2) = A � · · · � A (2 times) and let g(2) : A(2) ! C be the unital trace g(2) (-0 �

· · · � -2�1) =
Õ
2�1

0=0
g(-0)/2 and let %G = ⇢G,0 � · · · � ⇢G,2�1. Note that in this case, for every G,
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we have that

g
(2) (%G) =

2�1’
0=0

g(⇢G,0)/2 = 1/2.

This proves that

l
B

C
(�><(⌧, 2), c)  1 � 2

|⇢ | 5⌧,C (1/2).

For the other inequality, we see that the value of any synchronous density ?(0, 1 |G, H) 2

⇠
B

C
(=, :) is given by

l(�><(⌧, 2), c, ?) = 1 � 1

|⇢ |

2�1’
0=0

’
(G,H)2⇢

?(0, 0 |G, H).

If we use the uniform synchronous density, then this becomes,

1 � 1

|⇢ |

2�1’
0=0

’
(G,H)2⇢

1/22 = 1 � 1

2

.

Now suppose that we are given projections, {%G : G 2 +} ✓ A and a trace g of type t with

g(%G) = 1/2. Then we set ⇢G,0 = %G , ⇢G,1 = � � %G and ⇢G,0 = 0, 0 < 0, 1. For the corresponding

synchronous correlation, we have that

1 � lB
C
(�><(⌧, 2), c) 

1

|⇢ |
’

(G,H)2⇢

’
0

g(⇢G,0⇢H,0)

=
1

|⇢ |
’

(G,H)2⇢
g(%G%H + (� � %G) (� � %H))

=
1

|⇢ |
’

(G,H)2⇢
g(2%G%H + � � %G � %H)

=
2

|⇢ |
’

(G,H)2⇢
g(%G%H),
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and the other inequality follows. É

Corollary 4.3.7. Let ⌧ be a graph on = vertices. Then for the 2-colouring game, with uniform

distribution c on E, we have that

l
B

C
(�><(⌧, 2), c) = 1 � 2

|⇢ | 5⌧,C (1/2).

In particular, lB
@
(�><(⌧, 2), c) = lB@2 (�><(⌧, 2), c) and ⇠DC@,2(⌧) = |⇢ |

2
� 5⌧,@ (1/2).

Proof. The first result follows from the above inequalities. The second follows from [119, Propo-

sition 3.10] where it is shown that for any graph, 5⌧,@ (1/2) = 5⌧,@2 (1/2). É

There are similar inequalities, with different constants, for each of the three types of densities

discussed at the beginning of the section.

In general for 2 < 2, we do not expect that the upper bound is sharp. For example, suppose that

we had a graph such that

A
�1

⌧,C
 2 < jC (⌧).

Then 5⌧,C (1/2) = 0, but since 2 < jC (⌧) there is no perfect t-strategy and hence,

l
B

C
(�><(⌧, 2), c) < 1 = 1 � 2

=
2
5⌧,C (1/2).

Unfortunately, we do not know an example of a graph with this particular separation, so we cannot

say definitely that lB
C
(�><(⌧, 2), c) < 1 � 2

=
2
5⌧,C (1/2) , for some 2.

It is a consequence of Tsirelson’s work that for any graph 5⌧,@ (1/2) = 5⌧,@2 (1/2), this is

mentioned in [119] and we provide another proof in Section 4.4. Consequently, for the uniform
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distribution c,

l
B

@
(�><(⌧, 2), c) = lB@2 (�><(⌧, 2), c).

In fact, Tsirelson’s work tells us quite a bit more in the 2-colouring case, since 2-colouring games,

with appropriately chosen distributions on questions, belong to a family of games known as XOR

games, which is the topic of our next section.

First, we consider the value of the game of 2-colouring a complete graph on = vertices when

= > 2.

4.3.4 c-Colouring the Complete Graph on n Vertices

We now turn our attention to the case that ⌧ =  =. We begin by computing the graph correla-

tion function in this case. In addition to the graph correlation functions, 5⌧,C (A), C = ;>2, @, @2, the

paper [119] also introduces a function 5⌧,E42C (A) that satisfies, 5⌧,E42C (A)  5⌧,@2 (A). We use this

fact in the proof of the following theorem.

Theorem 4.3.8. For the complete graph  =, = � 5 and =�
p
=

2�4=

2=
 A  =+

p
=

2�4=

2=
we have that

5 =,@
(A) = 5 =,@2

(A) = =A (=A � 1).

Proof. In [119, Proposition 4.1] it is shown that for the complete graph 5 =,E42C
(A) = =A (=A � 1)

for 1

=
 A  =�1

=
. Note that 1

=
 =�

p
=

2�4=

2=
and =+

p
=

2�4=

2=
 =�1

=
.

In [129], it is proven that for any rational A in this smaller interval there exist = projection

matrices in "< for some <, &G , 0  G  = � 1 such that
Õ
=�1

G=0
&G = (=A)�<. Let

%G = �=�1

9=0
& 9+G ,

325



where the index is modulo =. Then
Õ
=�1

G=0
%G = (=A)�=<. Moreover, if we let g denote the normalized

trace on "<= then g(%G) = A for every G. Thus we can write

=A (=A � 1) = 5 =,E42C
(A)  5 =,@2

(A)  5 =,@
(A) 

’
(G,H)2⇢

g(%G%H).

Now notice that

’
(G,H)2⇢

g(%G%H) =
=�1’
G=0

’
H<G

g(%G%H)

=
=�1’
G=0

g(%G ((=A)�=< � %G))

=
=�1’
G=0

(=A � 1)g(%G)

= =A (=A � 1).

The result follows by observing that the functions 5@ = 5@0 and 5@2 are continuous. É

4.4 Synchronous Values of XOR Games

In [21] quantum values of XOR games were studied extensively. In this section, we recall their

results, study synchronous values of XOR games, explain how to calculate the synchronous values

using semidefinite programming, and compare the two sets of results. Later, we will consider

several specific examples of synchronous values of XOR games and study their properties. For

XOR games the output set is always Z2.

Definition 4.4.1. A game ⌧ = (�, {0, 1}, _) is an XOR game if there exists a function 5 : � ⇥ � !

{0, 1} such that _(G, H, 0, 1) = 1 if and only if 0 � 1 = 5 (G, H), where 0 � 1 denotes addition in the
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binary field.

Note that an XOR game is synchronous if and only if 5 (G, G) = 0 for all G 2 �, and symmetric

if and only if 5 (G, H) = 5 (H, G).

Computing values of XOR games is especially straightforward, because of the following ob-

servation together with the Tsirelson’s theory.

Proposition 4.4.2. Let ⌧ be an XOR game with |� | = = and prior distribution c, and let C 2

{;>2, @0, @2}. Then there exists a strategy ? 2 ⇠C (=, 2) such that lC (⌧, c) = l(⌧, c, ?), where

?� (0|G) = ?⌫ (0|H) = 1/2 for each G, H 2 �.

Proof. Since ⇠C (=, 2) is closed for each C 2 {;>2, @0, @2}, there exists ? 2 ⇠C (=, 2) such that

lC (⌧, c) = l(⌧, c, ?). Given such a density ?, there exist a Hilbert space �, operators

%1, . . . , %=,&1, . . . ,&= 2 ⌫(�), and a unit vector ⌘ 2 � such that

?(0, 0|G, H) = h%G&H⌘, ⌘i

for each G, H 2 �. For each G 2 �, define %0
8
= %8 � (� � %8) and ⌘0 = 1p

2
(⌘ � ⌘). Let ?0 2 ⇠C (=, 2)

be the unique density satisfying

?
0(0, 0|G, H) = h%0

G
&
0
H
⌘
0
, ⌘
0i
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for each G, H 2 �. Note that ?0(0, 1 |G, H) = 1

2
(?(0, 1 |G, H) + ?(0 � 1, 1 � 1|G, H)). Then

l(⌧, c, ?) =
’

G,H2�,0,12{0,1}
c(G, H)?(0, 1 |G, H)_(G, H, 0, 1)

=
’

G,H2�,0�1= 5 (G,H)
c(G, H)?(0, 1 |G, H)

=
’

G,H2�,0�1= 5 (G,H)
c(G, H)1

2
(?(0, 1 |G, H) + ?(0 � 1, 1 � 1|G, H))

=
’

G,H2�,0�1= 5 (G,H)
c(G, H)?0(0, 1 |G, H)

= l(⌧, c, ?0)

where we have used the fact that 0 � 1 = (0 � 1) � (1 � 1). Since ?0
�
(0|G) = ?

0
⌫
(0|H) = 1/2 and

since lC (⌧, c) = lC (⌧, c, ?) = lC (⌧, c, ?0), the statement is proven. É

Two-outcome densities satisfying ?� (0|G) = ?⌫ (0|H) = 1/2 for all G, H 2 � are called unbiased

densities in the literature. The following theorem is a restatement of Tsirelson’s characterisation

of quantum observables [130] in terms of unbiased densities. For those unfamiliar with the sim-

ilarities and differences between quantum observables and quantum densities, see [131, Theorem

11.8].

Theorem 4.4.3 (Tsirelson). Let ?(8, 9 |B, C) be a density such that ?� (0|B) = ?⌫ (0|C) = 1/2 for all

B, C. Then the following statements are equivalent:

1. ?(8, 9 |B, C) 2 ⇠@2 (=, 2).

2. There exist real unit vectors GB, HC 2 R< for 1  B, C  = such that ?(8, 9 |B, C) = 1

4
(1 +

(�1)8+ 9 hGB, HCi).

3. ?(8, 9 |B, C) 2 ⇠@ (=, 2).
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A similar statement can be made in the synchronous case.

Theorem 4.4.4. Let ?(8, 9 |B, C) be a synchronous density such that ?(0, 0|B, B) = ?(1, 1|B, B) for

all B. Then the following statements are equivalent:

1. ?(8, 9 |B, C) 2 ⇠B
@2
(=, 2).

2. There exist real unit vectors GB 2 R< for 1  B  = such that ?(8, 9 |B, C) = 1

4
(1 +

(�1)8+ 9 hGB, GCi).

3. ?(8, 9 |B, C) 2 ⇠B
@
(=, 2).

Proof. Suppose the first statement is true. By Theorem 4.4.3, there exist unit vectors GB, HC for

1  B, C  = such that ?(8, 9 |B, C) = 1

4
(1 + (�1)8+ 9 hGB, HCi). Since ?(8, 9 |B, B) = 0 whenever 8 < 9 ,

we have hGB, HBi = 1 for every B. By Cauchy-Schwarz, GB = HB for every B. The other implications

are straightforward. É

Remark 4. Given projections %G in a C*-algebra with a trace (A, g) such that g(%G) = 1/2, set

⇢G,0 = %G and ⇢G,1 = � � %G . Then g(⇢G,8⇢H, 9 ) := ?(8, 9 |G, H) is a density in ⇠@2 with marginals

equal to 1/2. Hence by the above result ?(8, 9 |G, H) 2 ⇠@. Given a graph ⌧ = (+ , ⇢), to compute

5⌧,@2 (1/2) we are minimizing

’
(G,H)2⇢

g(%G%H) =
’

(G,H)2⇢
?(0, 0|G, H),

over all sets of projections with g(%G) = 1/2 and, hence, 5⌧,@2 (1/2) = 5⌧,@ (1/2). This is essen-

tially the proof given in [119, Proposition 3.10].
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We will use the theorems above, together with Proposition 4.4.2, to calculate the values of

certain XOR games. For now, we will only provide a general formulation for these values in terms

of semidefinite programs.

Remark 5. Let ⌧ = (�, {0, 1}, _) be an XOR game with = := |� |, and suppose 5 : � ⇥ � ! {0, 1}

is a function satisfying 5 (G, H) = 0 � 1 if and only if _(G, H, 0, 1) = 1 for all 0, 1 2 {0, 1} and

G, H 2 �. Let c(G, H) be a prior distribution on �, and let G = (⌧, c) denote the game ⌧ with

questions asked according to the distribution c. Following [21], we define the matrix �G 2 "= by

�G = ((�1) 5 (G,H)c(G, H)), which [21] call the cost matrix. They also study a matrix

⌫G :=
1

2

©≠≠≠
´

0 �G

�
)

G 0

™ÆÆÆ
¨
2 "2=.

For synchronous values, the matrix,

�
B

G :=
1

2
(�G + �)G) 2 "=

plays a similar role to the cost matrix and we will refer to this matrix as the symmetrized cost

matrix.

Let E= ✓ "= denote the = ⇥ = elliptope defined by

E= := {% 2 "= (R) : 3806(%) = �= and % � 0}. (4.4.1)

The following formula for the value of an XOR game is a restatement of results in [21]. The

formula for the synchronous value is new.
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Theorem 4.4.5. Let ⌧ = (�, {0, 1}, _, c) be an XOR game with = := |� | and c(G, H) a prior

distribution on �. Then

l@2 (⌧, c) = l@ (⌧, c) =
1

2
+ 1

2
max
%2E2=

)A (⌫G%)

and

l
B

@2
(⌧, c) = lB

@
(⌧, c) = 1

2
+ 1

2
max
%2E=

)A (�BG%).

Proof. Suppose 5 : � ⇥ � ! {0, 1} is a function satisfying 5 (G, H) = 0 � 1 if and only if

_(G, H, 0, 1) = 1 for all 0, 1 2 {0, 1}.

We first consider the claim concerning l@2 (⌧, c). By Proposition 4.4.2, there exists ? 2

⇠@ (=, 2) such that l@2 (⌧, c) = l(⌧, c, ?) and ?� (0|G) = ?⌫ (0|H) = 1/2 for every G, H 2 �. Since

_(G, H, 0, 1) = 1 if and only if 0 � 1 = 5 (G, H), we have that

l@2 (⌧, c) =
’

G,H2�,0�1= 5 (G,H)
c(G, H)?(0, 1 |G, H).

By Theorem 4.4.3 this implies

l@2 (⌧, c) =
’

G,H2�,0�1= 5 (G,H)

1

4
c(G, H) (1 + (�1)0+1hEG ,FHi)

=
1

4

©≠
´

’
G,H2�,0�1= 5 (G,H)

c(G, H) +
’
G,H2�

c(G, H) (�1) 5 (G,H) hEG ,FHi™Æ
¨

where the EG’s and FH’s are real unit vectors. Since every expression of the form ?(0, 1 |G, H) =
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1

4
(1 + (�1)0+1hEG ,FHi) defines an element of ⇠@2 (=, 2), we have

l@2 (⌧, c) =
1

4

©≠
´

’
G,H2�,0�1= 5 (G,H)

c(G, H) + max
EG ,FH

’
G,H2�

c(G, H) (�1) 5 (G,H) hEG ,FHi™Æ
¨

where the maximization is over all sets of real unit vectors EG and FH. Since c(G, H) is a probability

distribution and 0 � 1 = 5 (G, H) for exactly two choices of pairs (0, 1), we have that

’
G,H2�,0�1= 5 (G,H)

c(G, H) = 2.

Also, notice that an = ⇥ = matrix has the form (hEG ,FHi)G,H for unit vectors EG and FH if and only

if it is the upper right (or lower left) =⇥ = corner of a matrix % 2 E2=, since every element % 2 E2=

has a Gram decomposition

% = (E1 . . . E=F1 . . .F=)⇤(E1 . . . E=F1 . . .F=).

A computation yields the expression

l@2 (⌧, c) = l@ (⌧, c) =
1

2
+ 1

2
max
%2E2=

)A (⌫G%).

To verify the claims concerning lB
@2
(⌧, c), first note that by the above argument we have

l
B

@2
(⌧, c) = lB

@
(⌧, c) = 1

2
+ 1

2
max
%
02E0

2=

)A (⌫G%
0).

where E0
2=
✓ E2= is taken to be the set of % 2 E2= whose upper right = ⇥ = corner has the form
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(hEG , EHi)G,H for a single set of real unit vectors {E1, . . . , E=}, by Theorem 4.4.4. Because of the

form of ⌫G , we may assume any %0 2 E0
2=

has the form

%
0 =

©≠≠≠
´
% %

% %

™ÆÆÆ
¨
, % 2 E=,

and a computation shows that )A (⌫G%0) = )A (�B
⌧
%). Thus

l
B

@2
(⌧, c) = lB

@
(⌧, c) = 1

2
+ 1

2
max
%2E=

)A (�BG%).

This proves the claims. É

4.5 Two Colourings

The 2-colouring game for a graph ⌧ = (+ , ⇢) is not formally an XOR game, since whenever

G < H and (G, H) 8 ⇢ we have that _(G, H, 0, 1) = 1 for all pairs 0, 1, while an XOR game requires

that 0 � 1 = 5 (G, H) 2 {0, 1} to win, for every G, H 2 + . However, if the prior distribution on inputs

has the property that c(G, H) = 0, whenever G < H and (G, H) 8 ⇢ , then we may arbitrarily set

5 (G, H) to be 0 or 1, without altering the corresponding value of the game. Thus, when we restrict

to prior distributions with this property, we may apply the results on synchronous XOR games to

compute the value of 2-colouring games.

Proposition 4.5.1. Let⌧ = (+ , ⇢) be a graph on = vertices and let �⌧ denote its adjacency matrix.

Then

⇠DC@,2(⌧) = ⇠DC@2,2(⌧) =
|⇢ |
4
� 1

4
min
%2E=

)A (�⌧%).

333



Proof. Recall that to compute this value we must consider the game G = (�><(⌧, 2), c) where

c is the uniform density on ⇢ . In this case we have an XOR game with 5 (G, H) = 1, 8(G, H) 2 ⇢ and

0 otherwise. Thus, �BG =
�
(�1) 5 (G,H)c(G, H)

�
= � 1

|⇢ | �⌧ and the result follows by Theorem 4.4.5.

É

It is not hard to see that if we let P= ⇢ E= be the set of all rank one positives all of whose

entries are ±1, then the ordinary max cut is given by

⇠DC2(⌧) =
|⇢ |
4
� 1

4
min
%2P=

)A (�⌧%).

This gives another way to see ⇠DC@,2(⌧) as a relaxation of the usual max cut.

We now turn our attention to studying 2 colourings for odd cycles. Let ⇠2:+1 be an odd cycle.

We will index the vertices by Z2:+1 so that vertices are adjacent if and only if they are the pair

( 9 , 9 ± 1), 0  9  2: where 2: + 1 = 0. We consider the game G = (�><(⇠2:+1, 2), c)

with several different prior distributions c on Z2:+1 ⇥ Z2:+1. We first consider a non-symmetric

uniform distribution, first studied by Cleve-Hoyer-Toner-Watrous [132], in order to compare the

synchronous and non-synchronous values of the game. We then consider a natural family of sym-

metric distributions. We will show that for both non-symmetric and symmetric distributions, the

synchronous quantum value of the game can be strictly smaller than the quantum value of the

game, though in some cases these values may coincide. In all cases, the @ and @2 values of the

game will coincide.
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4.5.1 Non-symmetric uniform distribution

We now compute the synchronous @-value of G = (�><(⇠2:+1, 2), c) with the prior distri-

bution given by

c(G, H) =

8>>>>>><
>>>>>>:

1

2=
G = H or G + 1 = H mod =

0 else

where = = 2: + 1. The game �><(⇠2:+1, 2) with the distribution c was studied in Subsection

3.2 of [132], where it was show that

l@2 (G) = l@ (G) = cos
2(c/4=) = 1

2
+ 1

2
cos(c/2=).

We will show that lB
@2
(G) = lB

@
(G) = 1

2
+ 1

2
cos

2(c/2=), which is strictly less than l@2 (G).

Theorem 4.5.2. Let = = 2: + 1. Then lB
@2
(G) = lB

@
(G) = 1

2
+ 1

2
cos

2(c/2=).

Proof. By Theorem 4.4.5, we have

l
B

@2
(G, c) = lB

@
(G, c) = 1

2
+ 1

2
max
%2E=

)A (�BG%)

where

�
B

G =

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

1

2=
� 1

4=
0 . . . � 1

4=

� 1

4=

1

2=
� 1

4=
. . . 0

.
.
.

.
.
.

.
.
.

0 � 1

4=

1

2=
� 1

4=

� 1

4=
. . . 0 � 1

4=

1

2=

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨
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and E= denotes the = ⇥ = elliptope defined in Equation (4.4.1). Thus, it suffices to calculate

max
%2E=

)A (�BG%).

The dual of this semidefinite program is

min
⇡2D=

)A (⇡) subject to ⇡ � �BG � 0

where D= denotes the set of = ⇥ = diagonal real matrices. Since the feasible region E= is convex

and includes positive definite matrices, and since D= is non-emepty, Slater’s conditions [133] are

satisfied and strong duality holds. By the symmetry of �BG , it suffices to minimize )A (⇡) over

all constant diagonal matrices. This is because if ⇡ is diagonal and satisfies ⇡ � �BG � 0, then

*
⇤(⇡ � �BG)* = *⇤⇡* � �BG � 0 where* is the cyclic shift

* =

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

0 1 0 . . . 0

0 0 1 . . . 0

.
.
.

.
.
.

.
.
.

0 0 0 1

1 0 . . . 0 0

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨

Averaging (* 9 )⇤⇡* 9 over all 9 2 {0, 1, . . . , = � 1} yields a constant matrix with the same trace as

⇡. Hence, we only need to calculate

min
H2R

=H subject to H�= � �BG � 0.
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Since the matrix H�= � �BG is circulant, its eigenvalues have the form

_ 9 =
✓
H � 1

2=

◆
+ 1

4=
l
9

=
+ 1

4=
l

(=�1) 9
=

,

where l= = 42c8/= is the primitive =-th root of unity2 (c.f. Exercise 2.2P10 of [134]). Observe that

_ 9 is real since l� 9
=

= l(=�1) 9
=

and thus l9

=
+l(=�1) 9

=
= 2Re(l9

=
). The smallest value of H for which

_ 9 � 0 for every 9 is

H =
1

2=
+ 1

2=
cos(c/=).

It follows that

max
%2E=

)A (�BG%) =
1

2
(1 + cos(c/=)) .

Consequently,

l
B

@2
(G, c) =

1

2
+ 1

4
(1 + cos(c/=))

=
1

2
+ 1

4

⇣
1 + 2 cos

2(c/2=) � 1

⌘

=
1

2
+ 1

2
cos

2(c/2=)

as desired. É

4.5.2 Symmetric distributions

The above shows that the synchronous @-value of a game is sometimes strictly smaller than

the @-value of the game. In that case, the gap between these values is aided by the fact that the

2This can be seen directly by checking that
⇣
1 l

9

=
. . . l

9 (=�1)
=

⌘
)

is an eigenvector for each 9 2 {0, 1, . . . , = �
1}.
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prior distribution is not symmetric. We will now show that even when the prior distribution is

symmetric, there may still be a gap between the synchronous @-value of the game and the @-value

of the game.

Let ?, @ � 0 with ? + @ = 1. Consider the symmetric prior distribution

c(G, H) =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

?

2=
G + 1 = H mod =

?

2=
H + 1 = G mod =

@

=
G = H

0 else

(4.5.1)

where = = 2: + 1. We first calculate the @-value of the two-colouring game, which is again equal

to the @2-value of the game.

Theorem 4.5.3. Let ?, @ � 0 with ? + @ = 1, and let c be the prior distribution given in equation

(4.5.1), where = = 2: + 1. Then

l@2 (G) = l@ (G) =

8>>>>>><
>>>>>>:

? ? >
1

2�cos2 (c/2=)

@ + ? cos
2(c/2=) else.

Moreover, l@2 (G) = l;>2 (G) whenever ? >
1

2�cos2 (c/2=) .

Proof. By Theorem 4.4.5, we have

l@2 (G, c) = l@ (G, c) = 1

2
+ 1

2
max
%2E2=

)A (⌫G%)
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where

⌫G :=
1

2

©≠≠≠
´

0 �G

�
)

G 0

™ÆÆÆ
¨
2 "2=, �G =

©≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠
´

@

=
� ?

2=
0 . . . � ?

2=

� ?

2=

@

=
� ?

2=
. . . 0

.
.
.

.
.
.

.
.
.

0 � ?

2=

@

=
� ?

2=

� ?

2=
. . . 0 � ?

2=

@

=

™ÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
¨

and E2= denotes the 2= ⇥ 2= elliptope. We will now calculate

max
%2E2=

)A (⌫G%).

The value of this semidefinite program is equal to the value of the dual program

min
⇡2D2=

)A (⇡) subject to ⇡ � ⌫G � 0

where D2= denotes the set of 2= ⇥ 2= diagonal real matrices. Following arguments in the previous

section, it suffices to minimize )A (⇡) over all constant diagonal matrices. Hence, we only need to

calculate

min
H2R

2=H subject to H�2= � ⌫G � 0.

It follows from Lemma 3.1 of [135] that the value of this semidefinite program is

2=k⌫G k = =k�G k.

Since �G is symmetric, its norm is equal to max 9 |_ 9 |, where _0, _1, . . . , _=�1 are the eigenvalues
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of �G . Since �G is circulant, its eigenvalues have the form

_ 9 =
@

=

� ?

2=
l
9

=
� ?

2=
l

(=�1) 9
=

where l= = 42c8/= is the =-th root of unity. Thus, the smallest eigenvalue of �G is _0 = @�?
=

, while

the largest eigenvalue is _(=�1)/2 = @

=
+ ?

=
cos(c/=). A calculation shows that

? � @
=

>

@

=

+ ?

=

cos(c/=) if and only if ? >

2

3 � cos(c/=) =
1

2 � cos2(c/2=)

using @ = 1 � ?. Thus

=k�G k =

8>>>>>><
>>>>>>:

? � @ ? >
1

2�cos2 (c/2=)

@ + ? cos(c/=) else

and thus

l@2 (G, c) =

8>>>>>><
>>>>>>:

1

2
+ 1

2
(? � @) ? >

1

2�cos2 (c/2=)

1

2
+ 1

2
(@ + ? cos(c/=)) else

.

Since

1

2
+ 1

2
(? � @) = 1

2
(? + @) + 1

2
(? � @) = ?
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and

1

2
+ 1

2
(@ + ? cos(c/=)) =

1

2
+ 1

2
(1 � ?) + ?

2
(cos(c/=))

= 1 � ?
2
+ ?

2
(2 cos

2(c/2=) � 1)

= 1 � ? + ? cos
2(c/2=)

= @ + ? cos
2(c/2=),

the first statement is proven. That l;>2 (G, c) = ? when ? >
1

2�cos2 (c/2=) follows from the observa-

tion that the value ? is obtained when Alice and Bob employ the deterministic strategy of always

returning opposite colors. É

We remark that whenever ? > (2�cos
2(c/2=))�1, the winning deterministic strategy of always

returning opposite colors (e.g. Alice always answers with 0 = 0 and Bob with 1 = 1) is not a

synchronous strategy. Let us now consider the synchronous value of this game.

Theorem 4.5.4. Let ?, @ � 0 with ? + @ = 1, and let c be the prior distribution given in equation

(4.5.1), where = = 2: + 1. Then

l
B

@2
(G) = lB

@
(G) = @ + ? cos

2(c/2=).

Consequently, lB
@2
(G) < l@2 (G) = l;>2 (G) whenever ? >

1

2�cos2 (c/2=) .

Proof. The proof is similar to the proof of Theorem 4.5.2, so we just outline the main points. By

Theorem 4.4.5,

l
B

@2
(G, c) = lB

@
(G, c) = 1

2
+ 1

2
max
%2E=

)A (�BG%).
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The value max%2E= )A (�BG%) is obtained by considering the eigenvalues of the circulant matrix

�
B

G = �G . These eigenvalues have the form

_ 9 =
@

=

� ?

2=
l
9

=
� ?

2=
l

(=�1) 9
=

where l= = 4
2c8/= is the =-th root of unity. In particular, the largest eigenvalue of �G is @

=
+

?

=
cos(c/=). Thus, the value of

min
⇡2D=

)A (⇡) subject to ⇡ � �BG � 0,

which is equal to

min
H2R

=H subject to H�= � �BG � 0

is given by

=

⇣
@

=

+ ?

=

cos(c/=)
⌘
= @ + ? cos(c/=).

Finally, repeating the calculations from the proof of Theorem 4.5.3 yields the result. É

4.6 Products of Games

There is a great deal of research concerning products of games and especially their behaviour

when one does many iterations of a fixed game [56, 57, 52]. Many of these results are false for

synchronous values of games.

Given two games ⌧8 = (-8,$8, _8), 8 = 1, 2 their product ⌧1 ⇥ ⌧2 is the game with input set
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- := -1 ⇥ -2, output set $ := $1 ⇥$2 and rule function,

_ : - ⇥ - ⇥$ ⇥$ ! {0, 1} = Z2,

given by

_((G1, G2), (H1, H2), (01, 02), (11, 12)) = _1(G1, H1, 01, 11)_2(G2, H2, 02, 12),

where the product is in Z2. Thus, they win if and only if _1(G1, H1, 01, 11) = 1 and _2(G2, H2, 02, 12) =

1, that is if and only if they win both games. It is customary to write _ = _1 ⇥ _2.

Given prior distributions c1 : -1 ⇥ -1 ! [0, 1] and c2 : -2 ⇥ -2 ! [0, 1] it is easy to see that

by defining,

c : - ⇥ - ! [0, 1], c((G1, G2), (H1, H2)) := c1(G1, H1) · c2(G2, H2),

we obtain a distribution on - ⇥ - , which is denoted by c1 ⇥ c2.

If G8 = (⌧8, c8) denotes the game with distribution c8 then we set G1⇥G2 = (⌧1⇥⌧2, c1⇥c2).

These definitions clearly extend to products of more than two games. Given a game with

distribution G = (⌧, c) we let G= = (⌧=
, c

=) denote the =-fold product of a game with itself.

Here are a few of the results that are known for the values of such games:

1. (Supermultiplicativity) lC (G ⇥ H) � lC (G)lC (H), and examples exist for which the in-

equality is strict,

2. lC (G ⇥H)  <8={lC (G),lC (H)}
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3. ⌧ ⇥ � has a perfect t-strategy () ⌧ and � each have a perfect t-strategy for C =

;>2, @0, @2.

4. if l;>2 (G) < 1, then l;>2 (G=) ! 0.

Thus, when the value is not 1, even though it is possible that l;>2 (G=) > l;>2 (G)=, we still

have that it tends to 0.

The analogues of (1) and (3) were shown to hold for synchronous values in [136], where an

example is also given to show that the inequality can be strict.

The example below shows that (2) and (4) can fail for synchronous values.

Example 4.6.1. Let G = (⌧, c) be the game where Alice’s and Bob’s question and answer sets

are {0, 1} and let the distribution c be given by c(0, 1) = c(1, 1) = 1/2. The players win if their

answer pair is (1, 1) when asked question pair (0, 1). They also win if their answer pair is (0, 1)

when they receive question pair (1, 1). They lose in all other cases. Note that Bob receives 1 with

probability 1 while Alice receives 0, 1 with equal probability.

This game has a perfect non-synchronous strategy, namely, for Bob to always return 1 and for

Alice given input G 2 Z2 to always return G + 1. Thus,

l;>2 (G) = l@2 (G) = 1,

and consequently,

l;>2 (G=) = l@2 (G=) = 1.
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Theorem 4.6.2. Let G = (⌧, c) be the game with distribution of Example 4.6.1. Then

l
B

;>2
(G=) = lB

@2
(G=) = 1 � 1

2=
.

Proof. The synchronous value of this game is at most 1/2, since on question (1, 1) a synchronous

strategy will require them to return the same answer and lose. On the other hand, the deterministic

strategy of Alice and Bob always returning 1 has a value of 1/2. Hence, lB
;>2

(G) = lB
@
(G) = 1

2
. In

terms of traces and projections, this is given by setting ⇢0,1 = ⇢1,1 = � and ⇢0,0 = ⇢1,0 = 0.

Now for the =-fold parallel repetition the questions are pairs G, H 2 {0, 1}= and the answers

are pairs 0, 1 2 {0, 1}=. But c= (G, H) = 0 unless H = (1, ..., 1) := 1
=
, while c(G, 1=) = 1

2=
, 8G 2

{0, 1}=.

The only question pair where the synchronous restriction can be enforced is therefore (1=, 1=),

and on this question any synchronous strategy loses as before. Thus, lB
@2
(G=)  1 � 1

2=
.

On the other hand, consider the deterministic strategy where when the input string is 1
= they

return 1
= but for every other input string G < 1

=, they return the output string G = G + 1
=, where

addition is in the vector space Z=
2
, i.e., each bit of G is flipped. For every string G < 1

= that Alice

receives this strategy wins. Hence, lB
;>2

(G=) � 1 � 1

2=
. Therefore the synchronous value of the

parallel repeated game is lB
;>2

(G=) = lB
@2
(G=) = 1 � 1

2=
.

Alternatively, this is the strategy that corresponds to choosing PVM’s,

⇢1=,1= = ⇢G,G = �, 8G < 1
=

,

and all other projections equal to 0. É
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Thus, not only does the synchronous value not tend to 0, but it is monotonically increasing.

Also, we have that

l
B

C
(G2) > min{lC (G),lBC (G)},

so that this example violates the synchronous analogues of properties (2) and (4).

Two objections can be raised to this example. The game itself is not synchronous and the

distribution is not symmetric. It is natural to wonder if this pathology persists even when restricting

attention to this smaller family of synchronous games with symmetric prior densities. This is

formalized in the following problems.

Problem 4.6.3. If G8 = (⌧8, c8), 8 = 1, 2 are symmetric synchronous games with symmetric densi-

ties, then is lB
C
(G1 ⇥ G2)  min(lB

C
(G1),lBC (G2))?

Problem 4.6.4. If G is a symmetric, synchronous game with symmetric distribution, can lB
C
(G=)

be monotone increasing?

We next return our attention to XOR games.

First note that the product of two XOR games is not an XOR game. In fact the product is not

even a game with binary answers. Our first step is to recall an operation on XOR games, studied

in [21], that unlike the product, produces an XOR game. The XOR of XOR games ⌧1 and ⌧2

with densities c1, c2 and rule functions 51 and 52, denoted by ⌧1 � ⌧2, is the XOR game (�1 ⇥

�2, {0, 1}, _) with distribution c1⇥c2 and rule function _ defined so that _((G1, G2), (H1, H2), 0, 1) =

1 iff 0 + 1 = 51(G1, H1) + 52(G2, H2) in Z2. The XOR of more than two games is defined inductively.

The following result shows why this is an interesting operation on XOR games.

Proposition 4.6.5. Let G8 = (�8, {0, 1}, _8, c8), 8 = 1, 2 be XOR games with densities and cost
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matrices �G8 , 8 = 1, 2. Then the cost matrix of their direct sum satisfies

�G1�G2
= �G1

⌦ �G2
.

The bias of a game with distribution is defined by the formulas

YC (G) = 2lC (G) � 1, C = ;>2, @, @2,

and corresponds to the probability of winning minus the probability of losing. Similarly, we have

the synchronous bias,

Y
B

C
(G) = 2l

B

C
(G) � 1, C = ;>2, @, @2.

In [21, Theorem 1] it was proven that the quantum bias of XOR games is multiplicative for the

direct sum operations, i.e.,

Y@ (G1 � G2) = Y@ (G1)Y@ (G2).

In what follows we show that this fails for the synchronous bias, even for a family of games

that is very well behaved.

Definition 4.6.6. An XOR game with distribution c will be called a synchronous XOR game,

provided that the game is synchronous, i.e., 5 (G, G) = 0, symmetric, 5 (G, H) = 5 (H, G) and the

distribution is symmetric, c(G, H) = c(H, G).

Note that when G is a synchronous XOR game, we have that the cost matrix �G = ((�1) 5 (G,H)c(G, H)) =

�
)

G and hence,

�
B

G = �G .
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In what follows we first show that the perfect parallel repetition does not hold for the syn-

chronous bias of synchronous XOR games. We then identify a subclass of XOR games for which

the synchronous value satisfies the perfect parallel repetition.

Restating Theorem 4.4.5 in terms of biases yields:

Theorem 4.6.7. Let ⌧ = (�, {0, 1}, _) be an XOR game with = := |� |, and suppose 5 : � ⇥ � !

{0, 1} is a function satisfying 5 (G, H) = 0�1 for all 0, 1 2 {0, 1}. Let c(G, H) be a prior distribution

on �. Then for G = (⌧, c),

Y@2 (G) = Y@ (G) = max
%2E2=

)A (⌫G%)

and

Y
B

@2
(G) = YB

@
(G) = max

%2E=
)A (�BG%).

Fix the question set to be � = {1, . . . ,<} and we can equivalently write the above optimization

problem for the bias of a synchronous XOR game as the primal-dual semidefinite programs

(P) maximize: h�, %i

subject to: diag(%) = 1,

% � 0,

(D) minimize:
<’
:=1

H:

subject to: Diag(H) � � � 0,

where the inner product is the trace inner product,

� := �BG = 1/2(c(G, H) (�1) 5 (G,H)) + 1/2(c(G, H) (�1) 5 (G,H))) ,
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and diag is the function that zeros out nondiagonal entries of a matrix, and Diag of a vector is the

matrix where the diagonal entries are the vector entries and nondiagonal entries are zero. This

primal-dual satisfies the Slater condition [133] and therefore their optimal values are attained and

are equal. In fact by complementary slackness if (%⇤, H⇤) is an optimal solution pair for primal and

dual then it holds that %⇤(Diag(H⇤) � �) = 0. Now if H0 is any other optimal dual solution, it holds

that %⇤Diag(H⇤ � H0) = 0. Since the diagonal entries of % are 1, this implies that H0 = H⇤. Therefore

we get the following lemma

Lemma 4.1. The dual problem (D) has a unique optimal solution.

In the next theorem, we show that the bias of an XOR game for which Diag(H⇤) � � �

�Diag(H⇤), where H⇤ is the unique dual optimal solution, are multiplicative. That is, for any two

XOR games with this property, we have YB
@
(⌧1�⌧2) = YB@ (⌧1)YB@ (⌧2). This in particular includes

all XOR games for which the game matrix is positive semidefinite. This is not true for all XOR

games as is shown by the next example.

Example 4.6.8. Let G be the synchronous XOR game with cost matrix

� =

266666666664

1

21
� 3

21
� 3

21

� 3

21

1

21
� 3

21

� 3

21
� 3

21

1

21

377777777775

.

The pair %⇤ =

266666666664

1 �1

2
�1

2

�1

2
1 �1

2

�1

2
�1

2
1

377777777775

and H⇤ =

266666666664

4

21

4

21

4

21

377777777775

are easily seen to be feasible solutions of the primal

and dual SDPs and they achieve the same value 4

7
in the primal and dual problems, respectively.
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Therefore they are optimal solutions and the optimal value and hence the synchronous quantum

bias of this game is

Y
B

@
(G) = 4

7
.

Now the cost matrix for the game G0 = G � G is � ⌦ �. Therefore the primal-dual problem for

G0 is

(P) maximize: h� ⌦ �,,i

subject to: diag(,) = 1,

, ⌫ 0,

(D) minimize:
9’
:=1

D:

subject to: Diag(D) � � ⌦ � ⌫ 0.

Now from a similar argument like above the pair ,⇤ = 44⇤ where 4 2 C9 is the all-one vector and

D = ( 5

21
)2
4 are optimal solutions for the primal and dual respectively and the optimal value is ( 5

7
)2.

So we have that

Y
B

@
(G � G) = (5

7
)2

> (4
7
)2 = YB

@
(G)2

.

Note that the unique optimal solution H⇤ for the dual problem of⌧ does not satisfy the condition

Diag(H⇤) � � � �Diag(H⇤)

because the eigenvalues of � are 4/21, 4/21,�5/21.

Definition 4.6.9. We call a synchronous XOR game G and symmetrized cost matrix � := �
B

G
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balanced, if the unique optimal dual solution H⇤ satisfies

Diag(H⇤) � � � �Diag(H⇤).

Suppose that G is a balanced game and H⇤ is its unique dual optimal solution. Note that if

H
⇤(8)  0 for some question 8, then the inequalities above imply that H⇤(8) = �(8, 8) = 0. Then

again since � +Diag(H⇤) is positive semidefinite (and its 8th diagonal element is 0), it must be that

the 8th column and row of � are all zeros. Therefore it is true that c(8, 9) = c( 9 , 8) = 0 for all

questions 9 . Therefore question 8 is irrelevant and can be removed from the question set of the

original game. Thus without loss of generality, we can assume that H⇤ > 0 (by H⇤ > 0 we mean

H
⇤(8) > 0 for all 8).

Proposition 4.6.10. Any XOR G game for which �BG � 0 is balanced.

Theorem 4.6.11. If G8, 8 = 1, 2 are balanced XOR games, then

Y
B

@
(G1 � G2) = YB@ (G1)YB@ (G2)

and G1 � G2 is balanced.

Proof. It is straightforward to see that YB
@
(G1 � G2) � YB@ (G1)YB@ (G2). So we just prove the reverse

inequality YB
@
(G1 � G2)  YB@ (G1)YB@ (G2).

Let �1 and �2 be the symmetrized cost matrices of G1 and G2, respectively. Then the sym-

metrized cost matrix of G = G1 � G2 is � = �1 ⌦ �2. By assumption the unique optimal dual
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solutions satisfy H1 > 0 and H2 > 0 and

�Diag(H1)  �1  Diag(H1),

�Diag(H2)  �2  Diag(H2).

We also have

��  Diag(H1)�1/2
�1 Diag(H1)�1/2  �,

��  Diag(H2)�1/2
�2 Diag(H2)�1/2  � .

This implies that the operator norm of

(Diag(H1)�1/2 ⌦ Diag(H2)�1/2) (�1 ⌦ �2) (Diag(H1)�1/2 ⌦ Diag(H2)�1/2)

is at most 1 and therefore

��  (Diag(H1)�1/2 ⌦ Diag(H2)�1/2) (�1 ⌦ �2) (Diag(H1)�1/2 ⌦ Diag(H2)�1/2)  �

which equivalently can be written as

�Diag(H1) ⌦ Diag(H2)  �1 ⌦ �2  Diag(H1) ⌦ Diag(H2).

Thus H1 ⌦ H2 is a feasible solution of the dual problem of ⌧1 � ⌧2. Therefore the bias of ⌧1 ⌦ ⌧2

is at most YB
@
(⌧1)YB@ (⌧2). Therefore it must be that YB

@
(⌧1 � ⌧2) = Y

B

@
(⌧1)YB@ (⌧2) and H1 ⌦ H2
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is the unique dual optimal solution for ⌧1 � ⌧2. Finally, from the last inequality we derived, the

game ⌧1 � ⌧2 is balanced. É

4.7 Optimality Conditions

In this section we derive conditions that a family ⇢ of = :-PVM’s in a tracial C*-algebra (A, g)

must satisfy in order to give the optimal value of a game. In the second part of this section we give

necessary conditions for when optimizing over positive operator valued measures (POVMs) has

a synchronous optimizer. This POVM subsection restricts A to be "<, the set of all < ⇥ <

matrices.

Our main definitions are stated for both :-PVMs and :-POVMs. These both consist of op-

erators {⇢G,0} which satisfy ⇢G,0 � 0 and
Õ
:�1

0=0
⇢0 = �, however, for a PVM each {⇢G,0} is a

projection. Given an = input, : output game and distribution, G = (⌧, c), and a tracial C*-algebra

(A, g), we seek conditions that a family ⇢ := {⇢G,0 : G 2 �, 0 2 $} of :-PVM’s or :-POVM’s

must satisfy in order to maximize the quantity

q(⇢) =
’

(G,H,0,1)2,
c(G, H)g(⇢G,0⇢H,1) =

’
(G,H,0,1)

c(G, H)_(G, H, 0, 1)g(⇢G,0⇢H,1).

When a family maximizes q over all PVM-families (resp. PVM-families) in A, we call it PVM

optimal (resp. POVM optimal) for (A, g). For each fixed (G, 0) 2 � ⇥$ we set

&G,0 =
’
H,1

(G,H,0,1)2# ,H<G

c(G, H)⇢H,1 +
’
H,1

(H,G,1,0)2# ,H<G

c(H, G)⇢H,1 .

Note that when _ is symmetric and the distribution is symmetric, then both sums occurring in the
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definition of &G,0 are equal.

4.7.1 Optimality over families of PVM’s

We begin with a first derivative condition.

Proposition 4.7.1. Let (⌧, c) = (�,$, _, c) be a synchronous game with distribution, let (A, g)

be a faithful trace of type t, let {⇢G,0} ✓ A and let ?(0, 1 |G, H) = g(⇢G,0⇢H,0). If {⇢G,0} is an

optimal PVM for (A, g), then

’
0

⇢G,0&G,0 =
’
0

&G,0⇢G,0, 8G 2 � .

Proof. Fix G0 2 �. Let � = �
⇤ 2 A and replace the projections ⇢G0,0

by 48�A⇢G0,0
4
�8�A , while

leaving all the other projections fixed. Let us call the resulting density ?A (0, 1 |G, H) and consider

the function

5 (A) = 1 � l(G, c, ?A) =
’

(G,H,0,1)2#
c(G, H)?A (0, 1 |G, H).

Since this smooth function attains its minimum at A = 0 we must have that

0 = 5
0(0) = 8

’
0,H,1

(G0,H,0,1)2# ,H<G0

c(G0, H)g(�⇢G0,0
⇢H,1 � ⇢G0,0

�⇢H,1)

+ 8

’
0,H,1

(H,G0,1,0)2# ,H<G0

c(H, G0)g(⇢H,1�⇢G0,0
� ⇢H,1⇢G0,0

�)

= 8

’
0,H,1

(G0,H,0,1)2# ,H<G0

c(G0, H)g(� (⇢G0,0
⇢H,1 � ⇢H,1⇢G0,0

))

+ 8

’
0,H,1

(H,G0,1,0)2# ,H<G0

c(H, G0)g(� (⇢G0,0
⇢H,1 � ⇢H,1⇢G0,0

))

= 8g(� (
’
0

⇢G0,0
&G0,0

�&G0,0
⇢G,0)).
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Since this is true for every � = �⇤ and g is faithful, we have that

’
0

⇢G0,0
&G0,0

�&G0,0
⇢G0,0

= 0,

from which the result follows. É

Remark 6. This proof is adapted from [119] where a similar idea was used to prove that for the

graph correlation function, if a set of projections {%G : G 2 +} minimized the correlation for a

graph (+ , ⇢), then necessarily each %G commuted with the sum of the projections over all vertices

adjacent to G.

Remark 7. We will show what this result says about the CHSH game, with uniform distribution.

Recall that this game has � = $ = Z2 and the rules are that to win 0 + 1 = GH where the arithmetic

is in the field Z2. Computation shows that

&0,0 = ⇢1,1, &0,1 = ⇢1,0, &1,0 = ⇢0,1, &1,1 = ⇢0,0.

Thus, the above result tells us that for an optimum PVM strategy,

⇢0,0⇢1,1 + ⇢0,1⇢1,0 = ⇢1,1⇢0,0 + ⇢1,0⇢0,1.

Setting % = ⇢0,0,& = ⇢1,0, this equation becomes

%(� �&) + (� � %)& = (� �&)% +&(� � %) =) %& = &%.
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Thus, an optimal synchronous strategy for this game is an abelian strategy, which shows that

l
B

@2
(⇠�(�) = lB

;>2
(⇠�(�)

and we know that this latter value is the supremum over all deterministic strategies where Alice

and Bob must use the same function 5 : � ! $. It is well-known that among these four functions,

the optimal is for Alice and Bob to always return 0, i.e., 5 (G) = 0,8G, which has a value of 3/4.

Thus, this game has no quantum advantage when we restrict to synchronous PVM strategies.

Remark 8. Set

⌦G =
’
0

⇢G,0&G,0 .

If we have {⇢G,0} optimal as above, then the optimality condition in Proposition 4.7.1 is equivalent

to ⌦G = ⌦⇤
G
, 8G and it is also equivalent to ⇢G,0&G,0⇢G,1 = ⇢G,0&G,1⇢G,1, 80, 1, G.

One difficulty with C*-algebras is that they might contain few projections, for example the C*-

algebra of continuous functions on [0, 1] only contains the two trivial projections. However, von

Neumann algebras are always generated by their projections. Given any C*-algebra and faithful

trace (A, g) after we take the GNS representation, we may always look at the tracial von Neumann

algebra generated by the image. Thus, insisting that A be a von Neumann algebra does not impose

an undue restriction.

Lemma 4.2. Let (A, g) be a von Neumann algebra with a faithful trace g, let ⇢ be a projection

and let � = �⇤. If for every projection %  ⇢ we have that g(%�) � 0, then ⇢�⇢ � 0.

Proof. Let A be a concrete von Neumann subalgebra of the bounded operators on some Hilbert

space. Recall that if ' � 0 is a positive element of A, then the projection % onto the range of ' is
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an element of A.

Decompose ⇢�⇢ = '+�'� into its positive and negative parts and let %  ⇢ be the projection

onto the range of '�. Since

0  g(%�) = g(%�%) = �g('�)  0

and g is faithful, we have that '� = 0 and so ⇢�⇢ � 0.

É

Proposition 4.7.2. Let (⌧, c) = (�,$, _, c) be a synchronous game with distribution, let (A, g)

be a von Neumann algebra with a faithful trace. If {⇢G,0} is an optimal PVM for (A, g), then

⇢G,0&G,1⇢G,0 + X1G ⇢G,0  ⇢G,0&G,0⇢G,0 + X0G ⇢G,0 (4.7.1)

where X0
G
= c(G, G)_(G, G, 0, 0).

Proof. Fix an G0 and a pair 00 < 10, and a projection, %  ⇢G0,00
. If we replace the family {⇢G,0}

by the family {�G,0} defined by

• �G,0 = ⇢G,0,8G < G0,

• �G0,2
= ⇢G0,2

,82 < 00, 10 ,

• �G0,00
= ⇢G0,00

� %,

• �G0,10
= ⇢G0,10

+ %,

then the value q(�) of this new family of projections must be smaller than q(⇢). Computing

q(⇢) � q(�) and applying the above lemma yields the result. É
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Remark 9. It is instructive to see what these results tell us in the case of the graph k-colouring

game with uniform distribution. If a set of projections {⇢G,0} is optimal for this game and we write

H ⇠ G to indicate that vertices G, H are adjacent, then &G,0 = 2
Õ
H⇠G ⇢H,0 and the first derivative

result tells us that for each 0
’
0

⇢G,0&G,0 =
’
0

&G,0⇢G,0 .

The second result implies that

⇢G,0 (
’
H⇠G

⇢H,1)⇢G,0  ⇢G,0 (
’
H⇠G

⇢H,0)⇢G,0,

since X0
G
= X1

G
. Summing this inequality over all 1, yields

3G⇢G,0  :⇢G,0 (
’
H⇠G

⇢H,0)⇢G,0

where 3G is the degree of the vertex G.

Remark 10. The necessary condition for a family to be PVM optimal for (A, g) in Proposition

4.7.1 comes from 5
0(0) = 0. An additional necessary condition for optimality comes from analyz-

ing 5
00(0)  0, which we did successfully and we found inequalities on the ⇢G,0&G,1⇢G,0 which are

equivalent to 5
00(0)  0. Comparing these inequalities to those in Proposition 4.7.2 yields, when

A = "<, that the conditions in Proposition 4.7.1 and Proposition 4.7.2 imply 5 00(0)  0. This is

unexpected, since one is derived by calculus and the other from permuting projections. We omit

the proof, since as just noted it does not give a new optimality condition and the proof is not short.
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4.7.2 Optimizing over POVM’s

In this second part of the section we give a set of optimality conditions for a more constrained

problem than we just studied. We study optimal POVM strategies which are synchronous. In

other words, these are optimal POVM strategies which are also PVM, as soon will be explained.

Throughout this subsection we specialize A to be "< the set of all <⇥< matrices and also require

the extra restriction that _(G, G, 0, 0) = 1,8G, 0. With these assumptions we can use semidefinite

programing theory, and get elegant optimality conditions Proposition 4.7.3 which easily imply the

(weaker) conclusions of Proposition 4.7.2 and Proposition 4.7.1 restricted to finite dimensions.

The following are known properties of POVM optimization. Note that if {⇢G,0} are only

POVM’s, then setting

?(0, 1 |G, H) = g(⇢G,0⇢H,1)

does define a density in ⇠@2, see Lemma 5.2 of [137]. But it will not necessarily be a synchronous

density. In fact, assuming that g is a faithful trace, we will have that the density is synchronous

if and only if g(⇢G,0⇢G,1) = 0 for 0 < 1 which is equivalent to ⇢G,0⇢G,1 = 0. On the other hand

the fact that
Õ
0
⇢G,0 = � and ⇢G,0⇢G,1 = 0 implies that each ⇢G,0 is a projection. Thus, the set of

densities that can be obtained in this fashion is strictly larger than the synchronous densities, but

it is also known to be smaller than the set of all densities in ⇠@2. For more details on this set of

densities see [137].

The main result of this subsection is

Proposition 4.7.3. Let (G, c) = (�,$, _, c) be a synchronous game with distribution such that

_(G, G, 0, 0) = 1 for all 0, G and let (A, g) = ("<, CA<) be the < ⇥ < matrices with their unique
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normalized trace. An optimizing POVM for (A, g) which is a PVM must satisfy

1. ⌦G �&G,1 � 0 5 >A 0;; 1

2. (⌦G �&G,1)⇢G,1 = 0 = ⇢G,1 (⌦G �&G,1) for all b.

Suppose the max value of the game occurs with a finite dimensional PVM strategy which is a

synchronous strategy. Then the hypotheses of this proposition apply; so (1) and (2) must both hold.

Remark 11. This can be compared to the previously derived necessary conditions, in the case

that they also assume _(G, G, 0, 0) = 1. That ⌦G is selfadjoint, the conclusion of Proposition 4.7.1,

is immediate from Proposition 4.7.3(1), since &G,1 is selfadjoint. Proposition 4.7.2 also follows

simply by compressing it with ⇢G,0.

As an example consider the graph coloring problem. Summing Proposition 4.7.3(1) on 1 =

0, 1, . . . , : � 1 gives

⌦G �
3G

:

� . (4.7.2)

This condition when compressed by ⇢G,0 is the same as the one in Remark 9, so this condition is

typically much stronger.

POVM proofs

Recall

q(⇢) =
’

(G,H,0,1)
c(G, H) _(G, H, 0, 1) g(⇢G,0⇢H,1).

It will be useful to sort q(⇢) according to dependence on a particular point G0. Let ⇢G denote the

POVM ⇢G := {⇢G,0, · · · , ⇢G,:�1}.
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Lemma 4.3. Fix g and fix G0. Then

q(⇢) = =>(G0) + c(G0, G0)`(⇢G0
) +

’
0,1

c(G0, G0)_(G0, G0, 0, 1) g(⇢G0,0
⇢G0,1

)

where =>(G0) denotes a function which has no dependence on G0 and `(⇢G) := g(Õ
0
⇢G,0&G,0).

Proof. This is a straightfoward decomposition of the sum defining q. É

We are setting about to derive the optimality conditions in Proposition 4.7.3 and wish to maxi-

mize q(⇢) over ⇢ which are POVMs. In this context we are assuming that _(G0, G0, 0, 0) = 1, that

_ is synchronous, and we analyse a maximizer ⇢G which is a PVM, hence by Lemma 4.3 we get

q(⇢) = =>(G0) + c(G0, G0)`(⇢G0
) + c(G0, G0)g(�) and emphasize that the first and last terms of q

are constant with respect to ⇢G0
. Thus optimality conditions for Proposition 4.7.3 are the same as

for the less encumbered problem: Fix G0

max
⇢G0

0 %$+"

`(⇢G0
).

This is equivalent to: maximize

g(
:�2’
0=0

⇢G0,0
(&G0,0

�&G0,:�1) + g( &G0,:�1 )

over ⇢G0,0
� 0, . . . , ⇢G0,:�1 � 0 subject to ⇢G0,:�1 = � � (⇢G0,0

+ · · · + ⇢G0,:�2) � 0. We call this

the core problem.
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This is a Semi Definite Program (SDP) over a domain with interior whose dual SDP is

min
'

g('(:�1) (:�1)) (4.7.3)

subject to

1. ' 2 R#:⇥#: , ' � 0 with ' partitioned as

' =:

©≠≠≠≠≠≠≠
´

'
00

. . . '
0(:�1)

.

.

.

.
.
.

.

.

.

'
(:�1)0

. . . '
(:�1) (:�1)

™ÆÆÆÆÆÆÆ
¨

2. '00 � '(:�1) (:�1) = �&G0,0
+&G0,:�1

The off diagonal terms of ' are irrelevant and we ignore them from now on.

Here the standard Primal -Dual Optimality Conditions, see [138], have the following form.

Lemma 4.4. If the POVM ⇢G and the dual optimizer ' exist (i.e. the optimum is achieved) for the

core problem, then these are satisfied for all 0:

1. '00 � 0

2. '00⇢G0,0
= 0 = ⇢G0,0

'
00

3. '00 � '(:�1) (:�1) = �&G0,0
+&G0,:�1 for all 0.
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Proof of Proposition 4.7.3 Proposition 4.7.3 follows from Lemma 4.4 as we now see. First observe

that '00 � '11 = �&G0,0
+&G0,1

, because

'
00 � '11 = '00 � '(:�1) (:�1) � ('11 � '(:�1) (:�1)).

From this we get ⌦G0
�&G0,1

= '11 � 0 for all 1, because

’
0

⇢G0,0
(&G0,0

�&G0,1
) = �

’
0

⇢G0,0
'
00 +

’
0

⇢G0,0
'
11

⌦G0
�&G0,1

= +
’
0

⇢G0,0
'
11 = '11 .

The optimality conditions have been proved.

Now we turn to the last claim in the proposition. Letting l?>E< (⌧, c) denote the max value of

the game over all densities of the form g(⇢G,0⇢H,1) for POVMs {⇢G,0} in a finite dimensional von

Neumann algebra with a trace g, the last assertion of the proposition operates under assumptions

which imply

l
B

@
(⌧, c)  l?>E< (⌧, c)  l@2 (⌧, c) = l@ (⌧, c);

the second inequality following from Lemma 5.2 of [137]. Thus our maximizing PVM strategy is

also a POVM maximizer which amounts to the (demanding) hypothesis of Proposition 4.7.3. É
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[7] L. Mančinska and D. E. Roberson, “Quantum homomorphisms,” Journal of Combinatorial
Theory, Series B, vol. 118, pp. 228–267, 2016.
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